## ASSP

# FeRAM Embedded UHF Band RFID LSI

## **For Battery-less Solution**

## MB97R8110

## ■ 1. OVERVIEW

This document provides LSI specifications for the passive RFID Tag LSI "MB97R8110" (USER bank 8kBytes) based on "EPCglobal Class 1 Generation 2 Ver.1.2.0".

In this specification, the term "interrogator" used in EPCglobal standard is described as R/W (reader/writer). The term "Tag" is used as is.

## 1.1 FEATURES

• Compliant with EPCglobal Class 1 Generation 2 (C1G2)

-Carrier frequency: 860 to 960 MHz

- -Data rate
- $R/W \rightarrow Tag: 26.7$  kbps to 128 kbps (assuming equiprobable data)
- Tag  $\rightarrow$  R/W: 40 kbps to 640 kbps
- RF Generated Power supply to external devices (3.0V 600uA output from +8dBm RF input)
- Serial Interface (SPI)
- -Slave mode operation : USER memory area can be read/written through SPI.
- -Master mode operation : External SPI slave device can be controlled through SPI.
- -Arbitration feature between RF and SPI access controlled by SPIREQ and SPIACK.
- Key Matrix Scan Interface
- FeRAM: Non-volatile memory with High speed read and write
  - -USER bank size: 61,440 bits\*
  - -EPC length: up to 480bits
  - -BlockPermalock: 8 Areas of USER bank to be write-protected in units of 512 words (=8,192bits).
  - -Read/Write Endurance: 10<sup>13</sup> times.
  - -Memory data retention: 10 years (+85 °C)

\*In SPI Master communication, 28,672bits of memory can be allocated for the buffer of data to be transferred to external slave device and the storage of response data from external SPI slave device.

Fujitsu Semiconductor Memory Solutions Limited has changed its name to RAMXEED Limited. RAMXEED Limited will continue to offer and support existing products while maintaining Fujitsu's part number unchanged.

## ■ 1.2 BLOCK DIAGRAM

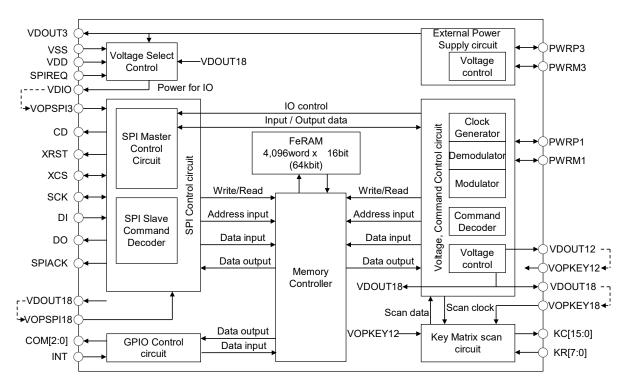



Figure 1.2 - BLOCK DIAGRAM



## ■ 1.3 PAD CONFIGURATION

#### ■ 1.3.1 Pad Layout

Figure 1.3.1 shows PAD Layout.

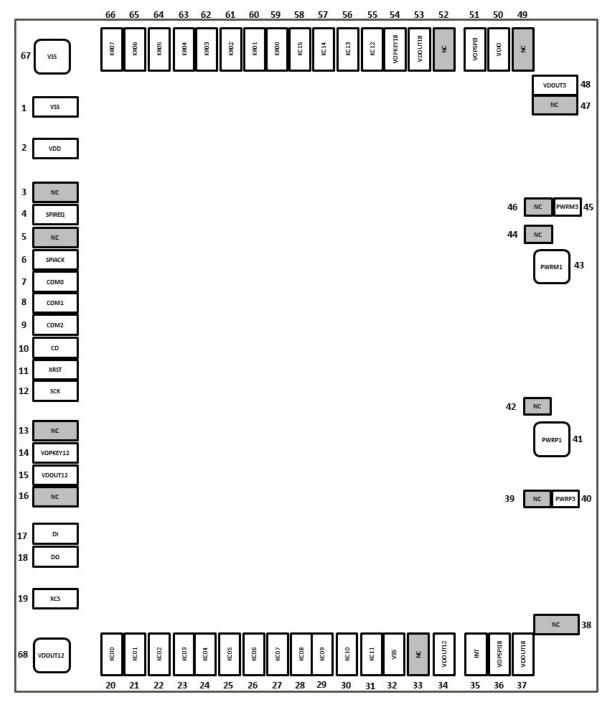



Figure 1.3.1 Pad Layout

## ■ 1.3.2 Pad Information

Table 1.3.2.1 shows PAD configuration and Power source. Table 1.3.2.2, 1.3.2.3 and Table 1.3.2.4 show Pad status of SPI, GPIO and Key Matrix scan respectively depending on the condition. Table 1.3.2.1 Pad configuration and Power source

|    | Pad Name        | In / Out          | Power Source  | Terminal            | Function Description                                            |
|----|-----------------|-------------------|---------------|---------------------|-----------------------------------------------------------------|
|    | VSS             | VSS               | -             | -                   | Ground                                                          |
|    | VDD             | In (Power)        | -             | -                   | External power input for SPI Slave communication (3V)           |
|    | NC              | -                 | -             | -                   | Open                                                            |
| 4  | SPIREQ          | In                | VOPSPI3       | Pull Down(1MΩ)      | SPI Slave request input                                         |
| 5  | NC              | -                 | -             | -                   | Open                                                            |
|    | SPIACK          | Out               | VOPSPI3       | -                   | Response to SPI Slave request (SPI Status output)               |
|    | COM0            | Out               | VOPSPI3       | -                   | GPIO (register data output)                                     |
| 8  | COM1            | Out               | VOPSPI3       | -                   | GPIO (register data output)                                     |
| 9  | COM2            | Out               | VOPSPI3       | -                   | GPIO (register data output)                                     |
| 10 | CD              | Out               | VOPSPI3       | -                   | Command/Data output                                             |
| 11 | XRST            | Out               | VOPSPI3       | -                   | Reset output                                                    |
| 12 | SCK             | In/Out            | VOPSPI3       | -                   | SPI Clock                                                       |
|    | NC              | -                 | -             | -                   | Open                                                            |
| 14 | VOPKEY12        | In (Power)        | -             | Pull Down(6MΩ)      | Power input for Key Matrix scan circuit (connect to pad15)      |
| 15 | VDOUT12         | Out (Power)       | -             | -                   | Internally generated power output (1.2V)                        |
| 16 | NC              | -                 | -             | -                   | Open                                                            |
| 17 | DI              | In                | VOPSPI3       | -                   | SPI Data input                                                  |
|    | DO              | Out               | VOPSPI3       | -                   | SPI Data output                                                 |
|    | XCS             | In/Out            | VOPSPI3       | -                   | SPI Chip select                                                 |
|    | KC00            | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | KC01            | Out               | VOPKEY18      |                     | Key Matrix scan pulse output                                    |
|    | KC02            | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | KC03            | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | KC04            | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | KC05            | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | KC06            | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | KC07            | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | KC08            | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | KC09            | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | KC10            | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | KC11            | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | VSS             | VSS               | -             | -                   |                                                                 |
|    | NC              | -                 | -             | -                   | Open                                                            |
|    | VDOUT12         | Out (Power)       | -             | -                   | Internally generated power output (for Internal circuit)        |
|    | INT             | In                | -             | -                   | GPIO(register data input)                                       |
|    | VOPSPI18        | In (Power)        | -             | Pull Down(6MΩ)      | Power input for SPI and GPIO (connect to pad37)                 |
|    | VDOUT18         | Out (Power)       | -             | -                   | Internally generated power output(for FeRAM)                    |
|    | NC              | -                 | -             | -                   | Open                                                            |
|    | NC              | -                 | -             | -                   | Open                                                            |
|    | PWRP3           | In                | -             | -                   | Antenna pad for external power supply                           |
| _  | PWRP1           | In                | -             | -                   | Antenna pad for RF communication                                |
|    | NC              | -                 | -             | -                   | Open                                                            |
| _  | PWRM1           | In                | -             | -                   | Antenna pad for RF communication                                |
|    | NC              | -                 | -             | -                   | Open                                                            |
|    | PWRM3           | In                | -             | -                   | Antenna pad for external power supply                           |
| _  | NC              | -                 | -             | -                   | Open                                                            |
|    |                 | -<br>Out (Device) | -             | -                   | Open<br>Dewar output for outprool dovises                       |
|    | VDOUT3<br>NC    | Out (Power)       | -             | -                   | Power output for external devices                               |
|    | VDIO            | -<br>Out (Power)  | -             | -                   | Open<br>IO Power output                                         |
|    | VDIO<br>VOPSPI3 | In (Power)        | -<br>VOPSPI3  | -<br>Pull Down(6MΩ) | Power output<br>Power input for SPI and GPIO (connect to Pad50) |
| _  | NC              | III (FOWEI)       | 1053513       |                     | Open                                                            |
|    | VDOUT18         | -<br>Out (Power)  | -<br>         | -                   | Internally generated power output(for FeRAM)                    |
|    | VOPKEY18        | In (Power)        | -<br>VOPKEY18 | -<br>Pull Down(6MΩ) | Power input for Key Matrix scan circuit (connect to pad53)      |
|    | KC12            | Out               | VOPKEY18      |                     | Key Matrix scan pulse output                                    |
|    | KC12<br>KC13    | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | KC13<br>KC14    | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | KC14<br>KC15    | Out               | VOPKEY18      | -                   | Key Matrix scan pulse output                                    |
|    | KR00            | In                | VOPKEY18      | Pull Down(150kO)    | Key Matrix scan buse output                                     |
|    | KR01            | In                | VOPKEY18      |                     | Key Matrix scan data input                                      |
|    | KR02            | In                | VOPKEY18      |                     | Key Matrix scan data input                                      |
|    | KR03            | In                | VOPKEY18      |                     | Key Matrix scan data input                                      |
|    | KR04            | In                | VOPKEY18      |                     | Key Matrix scan data input                                      |
|    | KR05            | In                | VOPKEY18      |                     | Key Matrix scan data input                                      |
|    | KR06            | In                | VOPKEY18      |                     | Key Matrix scan data input                                      |
|    | KR07            | In                | VOPKEY18      |                     | Key Matrix scan data input                                      |
|    | VSS             | VSS               | -             | -                   |                                                                 |
|    | VDOUT12         | Out (Power)       | -             | -                   | Internally generated power output (for Internal circuit)        |
|    |                 |                   |               |                     | , g                                                             |



#### Table 1.3.2.2 SPI pad status

|         | In             | itial | SPI Ma | ster(En=0) | SPI Ma  | ster(En=1) | SPI Slave |         |  |  |  |  |
|---------|----------------|-------|--------|------------|---------|------------|-----------|---------|--|--|--|--|
| PadName | e In/Out Value |       | In/Out | Value      | In/Out  | Value      | In/Out    | Value   |  |  |  |  |
| SPIREQ  | In             | —(PD) | In     | 0(PD)      | In      | 0(PD)      | In        | 1       |  |  |  |  |
| SPIACK  | Out            | L     | Out    | L          | Out     | L          | Out       | Н       |  |  |  |  |
| XCS     | In/Out         | HiZ   | Out    | HiZ        | Out     | H/L        | In        | 1/0     |  |  |  |  |
| SCK     | In/Out         | HiZ   | Out    | HiZ        | Out     | L/H        | In        | 0/1     |  |  |  |  |
| DI      | In             |       | In     | -          | In      | 0/1        | In        | 0/1     |  |  |  |  |
| DO      | Out            | HiZ   | Out    | HiZ        | Out     | L/H/HiZ    | Out       | L/H/HiZ |  |  |  |  |
| XRST    | Out            | L     | Out L  |            | Out L/H |            | Out       | _       |  |  |  |  |

\*. The initial state is reset state. SPI Master is in the state of SPI=L. SPI slave is in the state of SPIACK=H. Refer to Chapter 7.1.1 for SPI master setting (En=0/1).

(Information in the table) 0/1 : Input value, L/H : Output value, PD : PullDown, - : Invalid

. Ilivallu

Table 1.3.2.3 GPIO pad status

|         | In     | itial | Fur    | ncEn=0 | FuncEn=1 |             |  |  |
|---------|--------|-------|--------|--------|----------|-------------|--|--|
| PadName | In/Out | Value | In/Out | Value  | In/Out   | Value       |  |  |
| COM2-0  | Out    | HiZ   | Out    | HiZ    | Out      | L/H(ComDat) |  |  |
| INT     | In     | -     | In     | •      |          | 0/1         |  |  |

\*. Refer to Chapter 7.2.1 for GPIO setting (FuncEn=0/1)

Table 1.3.2.4 Key Matrix scan pad status

|           | In      | itial | KeyMat | rixscanOff | KeyMatrixscanON |         |  |  |
|-----------|---------|-------|--------|------------|-----------------|---------|--|--|
| PadName   | In/Out  | Value | In/Out | Value      | In/Out          | Value   |  |  |
| KC15-KC00 | Out     | HiZ   | Out    | HiZ        | Out             | HiZ/H   |  |  |
| KR07-KR00 | In –(PD |       | In     | —(PD)      | In              | 0(PD)/1 |  |  |
|           |         |       |        |            |                 |         |  |  |

\*. Refer to Chapter 7.3.1 for Key Matrix scan setting (Off/On).



## 1.4 POWER SUPPLY

This operational power is internally generated from RF power. For extended feature other than RFID tag feature, such as SPI Master, SPI Slave, and Key Matrix scan, the optional power (VOPSPI3, VOPSPI18, VOPKEY18, VOPKEY12) will be provided by connecting the designated pads as shown in Table 1.4.

Table 1.4 Power generation

| Extended Feature | Internal generated Power |              |                         | Optional Power |
|------------------|--------------------------|--------------|-------------------------|----------------|
|                  |                          | (Output pad) | $\overline{\mathbf{v}}$ | (Input pad)    |
| SPI Master       | 50                       | VDIO         | 51                      | VOPSPI3        |
|                  | 37                       | VDOUT18      | 36                      | VOPSPI18       |
| SPI Slave        | 50                       | VDIO         | 51                      | VOPSPI3        |
| SFISIAVE         | 37                       | VDOUT18      | 36                      | VOPSPI18       |
| Koy Matrix Soon  | 15                       | VDOUT12      | 14                      | VOPKEY12       |
| Key Matrix Scan  | 53                       | VDOUT18      | 54                      | VOPKEY18       |

#### 2 RF INTERFACE

RF signal interface is compliant with EPCglobal Class 1 Generation 2 Ver.1.2.0.

#### ■ 2.1 Modulation type, communications timing

Compliant with EPCglobal Class 1 Generation 2 Ver.1.2.0

## ■ 2.2 Inventory, Tag selection

Compliant with EPCglobal Class 1 Generation 2 Ver.1.2.0

#### ■ 2.3 Tag state-transition

Compliant with EPCglobal Class 1 Generation 2 Ver.1.2.0

### ■ 2.4 RF communication Error code

This LSI replies error code if it encounters an error when executing a handle-based command under Open state or Secured state. Error code described in EPCglobal Class 1 Generation 2 Ver.1.2.0 (AnnexI) and a proprietary error code are supported as shown in Table2.4.

| Table 2.4 Error code | ; |
|----------------------|---|
|----------------------|---|

| Error code | Error code name         | Error description                                            |
|------------|-------------------------|--------------------------------------------------------------|
| 00h        | Other errors            | Other errors not covered by the following errors             |
| 03h        | Memory overrun          | The specified memory location does not exist.                |
| 04h        | Memory locked           | The specified memory location is locked or permalocked       |
| 0Bh        | Insufficient power      | Insufficient power to perform the operation %1               |
| 8Eh        | No detection of Keys ※2 | No pressed key detected during the Key Matrix scan operation |

%1. This error covers not only RF command operation but also extended application (refer to Chapter 7). If the power is insufficient to backscatter, the LSI cannot reply error code,

\*2. Proprietary Error code for Key Matrix scan application



## ■ 3 SPI Interface

#### ■ 3.1 Overview

This LSI has SPI (Serial Peripheral Interface) interface that enables to operate the following features.

• As SPI slave device, the memory data can be accessed through the SPI interface (External power is required for the operation).

•As SPI master device, the external SPI slave device can be controlled by RF command (RF generated power is supplied for the external device).

#### ■ 3.2 SPI Mode

This LSI supports SPI mode 0 (CPOL=0, CPHA=0).

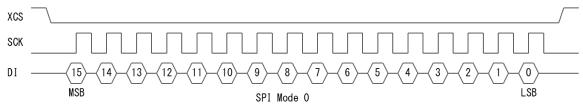



Figure 3.2 – SPI mode



### ■ 3.3 SPI Slave Interface

#### ■ 3.3.1 Connection to SPI Interface

When this LSI is used as SPI slave device, the connection with SPI controller (master) shall be as shown in Figure 3.3.1.

In order to start SPI slave communication, external SPI master device shall set SPIREQ to "H" level to request the communication. After SPIACK outputs "H" level, XCS shall be set to "L" level. And then SPI slave communication will be enabled. SPI controller shall stay SPIREQ "H" level, and can continue to execute commands without any interruption from RF interface during when SPIACK is "H" level. Any command from RF interface is invalid during SPI slave operation. When SPIACK is "L" level, SPI slave communication cannot be enabled.

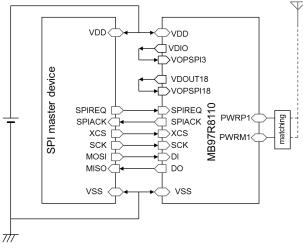



Figure 3.3.1 - SPI Slave interface connection

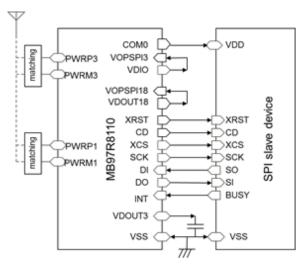


#### ■ 3.3.2 Power down mode

When SPI master operation is disabled, if SPIREQ is switched to "L" level, this LSI will be in power down mode, which enables to reduce current consumption between VDD-VSS. (refer to 8.4.1) All the input pins excepting VDD shall be "L" level during power down mode. When SPI master operation is enabled and SPIREQ is "L" level, it is prohibited to make XCS and SCK "L" level in order to avoid conflict with SPI master operation.

#### 3.3.3 Usage

Please refer to Chapter 5.2 and 5.3.regarding the usage of SPI slave interface.


## ■ 3.4 SPI Master Interface

#### ■ 3.4.1 Connection to SPI Interface

When this LSI is used as SPI master device, the connection with external SPI slave device shall be as shown in Figure 3.4.1.1 and Figure 3.4.1.2. It is recommended to connect capacitor between VDOUT3 and VSS, when external SPI slave device operation causes rapid current consumption. And power supply to external SPI slave device is recommended to be controlled by "H" level output from any bit out of COM[2:0] of GPIO (refer to Chapter 7.2.1). VDIO output shall be connected to VOPSPI3, and VDOUT18 output shall be connected to VOPSPI18. In this case "H" level output of COM[2:0] will be the same as the voltage level input from VOPSPI3 (Refer to Chapter 7.1.7).

Figure 3.4.1.1 shows an example of SPI master interface connection, in which XRST and CD pins are used for the connection. And DI and DO are connected with external SPI slave device respectively. Busy signal of external SPI slave device is connected to INT pin, which is assigned in GPIO interface, and busy status can be read by Reader/Writer (refer to 7.2.2).

Figure 3.4.1.2 shows another example of SPI master interface connection, in which XRST, CD, and INT pins are not used for the connection. And DI and DO is used as common bus connection (Mux).



COM0 ססע VOPSPI3 PWRP3 VDIO WRM3 VOPSPI18 slave device VDOUT18 XRST CD MB97R8 XCS XCS WRD SCK SCK WRM1 R DI SIO DO INT VDOUT3 VSS VSS

Figure 3.4.1.1 - SPI master interface connection 1

Figure 3.4.1.2 - SPI master interface connection 2

#### 3.4.2 Usage

Please refer to Chapter 7.1 regarding the usage of SPI master interface.



## ■ 3.5 GPIO Interface

## ■ 3.5.1 GPIO

GPIO interface enables to output 3bits of register value to COM[2:0] pins (refer to chapter 4.2.4.2 about address allocation). The value can be updated by BlockWrite command of RF communication. The state of INT can be read by Read command of RF communication.

## ■ 3.5.2 Usage

GPIO can be utilized as the following use cases.

- LED ON/OFF control
- · Power supply to external SPI slave device under SPI master operation
- Status monitoring of external connected devices

For the detail, refer to Chapter 7.2.



## ■ 3.6 Key Matrix scan interface

#### ■ 3.6.1 Connection method

The Key Matrix scan interface enables to be connected to matrix key input device which returns key data on scan clock.

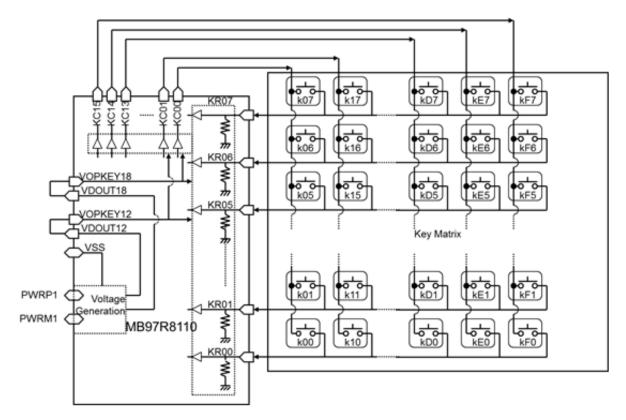



Figure 3.6.1 – Key Matrix and connection example

#### ■ 3.6.2 Usage

Refer to Chapter 7.3 regarding the usage of Key Matrix scan interface



## ■ 3.7 Power sequence and Arbitration

#### ■ 3.7.1 Arbitration between RF and SPI slave communication

The arbitration feature manages memory access from either RF interface or SPI interface in order to avoid any interruption to each other. SPIREQ and SPIACK manages to switch communication from RF interface to SPI interface by activating VDD, and vice versa.

In order to start SPI slave communication, the external SPI master device connected to this LSI shall set SPIREQ to "H" level to request communication. Upon the request, this LSI sets SPIACK to "H" level after completing active communication from RF interface. Then XCS shall be set to "L" level, and SPI slave communication will be ready. It is possible to start SPI slave communication during the period when SPIACK is "L" level, even if XCS is "L" level.

The example of arbitration sequence between RF and SPI slave communication is shown in Figure 3.7.1. As described, when SPIACK is "L" level, any command input from SPI slave interface is prohibited even if XCS is in "L" level. When SPIACK is "H" level, any command from RF interface is invalid and SPI slave communication will be continued. In this case, SPIREQ shall be set to "L" after completing active communication from SPI interface in order to switch to RF communication.

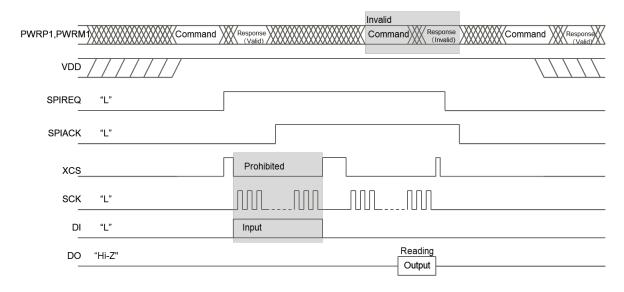



Figure 3.7.1 — The arbitration sequence between RF communication and SPI slave communication

In addition, SPI master function and Key Matrix scan function works as RF communication under the arbitration sequence above.



## ■ 4 Memory

## 4.1 Memory address

## 4.1.1 Address description

The memory address is allocated in the units of 16bits (=1word). The logical address in each memory bank is described as WordAdr in this document. WordPtr is the address specified by RF command access, which is described in EBV(Extensible bit vectors) format conforming to EPCglobal Class 1 Generation 2 standard (AnnexA). EBV format is shown in Talbe4.1.1. The address description in this document is shown in Table4.1.2. The address specified by SPI slave communication command from external SPI master device shall be 2bits of MemBank and 14bits of WordAdr(Total 16bits). The practical examples of the comparison between WordPtr and WordAdr are shown in Table4.1.3.

| Table 4.1.1 EBV format (Excerpt from | EPCglobal standard) |
|--------------------------------------|---------------------|
|--------------------------------------|---------------------|

|                     | 0     | 0 | 0000000 |   |         |   |         |
|---------------------|-------|---|---------|---|---------|---|---------|
|                     | 1     | 0 | 0000001 |   |         |   |         |
| 2 <sup>7</sup> – 1  | 127   | 0 | 1111111 |   |         |   |         |
| 2 <sup>7</sup>      | 128   | 1 | 0000001 | 0 | 0000000 |   |         |
| 2 <sup>14</sup> – 1 | 16383 | 1 | 1111111 | 0 | 1111111 |   |         |
| 2 <sup>14</sup>     | 16384 | 1 | 0000001 | 1 | 0000000 | 0 | 0000000 |

Table 4.1.2 Address description in this document

| Address range  | WordAdr[13:0]*1 | WordPtr[7:0] or<br>WordPtr[15:8]<br>(RF access) | Comparison between<br>WordPtr and WordAdr                        |
|----------------|-----------------|-------------------------------------------------|------------------------------------------------------------------|
| 0000h to 007Fh | 0000h to 007Fh  | 00h to 7Fh                                      | WordPtr={ <u>0</u> , WordAdr[6:0]} *2                            |
| 0080h to 0F3Fh | 0080h to 0F3Fh  | 8100h to 9E3Fh                                  | WordPtr={ <u>1</u> ,WordAdr[13:7],<br><u>0</u> ,WordAdr[6:0]} *2 |

\*1. The address specified by SPI slave access is 2bits of MemBank and 14bits of WordAdr (16bits total). \*2. Underlined 0,1 is defined by EBV format.

#### RAMXEED

Table 4.1.3 Comparison between WordPtr and WordAdr

| WordAdr = 0000h                                                                                                                                                                                                                             |                            |                       |                                                     |                                          |                                           |                                                  |                                                          |                                           |                            |                            |                                           |                            |                            |                                                          |                                 |                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|-----------------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------------|----------------------------------------------------------|-------------------------------------------|----------------------------|----------------------------|-------------------------------------------|----------------------------|----------------------------|----------------------------------------------------------|---------------------------------|---------------------------------|
| WordAdr[13:0]                                                                                                                                                                                                                               | 1                          |                       | 13                                                  | 12                                       | 11                                        | 10                                               | 9                                                        | 8                                         | 7                          | 6                          | 5                                         | 4                          | 3                          | 2                                                        | 1                               | 0                               |
| 0000h                                                                                                                                                                                                                                       | †                          |                       | 0                                                   | 0                                        | 0                                         | 0                                                | 0                                                        | 0                                         | 0                          | 0                          | 0                                         | 0                          | 0                          | 0                                                        | 0                               | 0                               |
| 000011                                                                                                                                                                                                                                      |                            |                       |                                                     |                                          |                                           |                                                  | •                                                        |                                           | . •                        |                            |                                           |                            | , •                        |                                                          |                                 |                                 |
| WordPtr[7:0]                                                                                                                                                                                                                                | 1                          |                       |                                                     |                                          |                                           |                                                  |                                                          |                                           | 7                          | 6                          | 5                                         | 4                          | 3                          | 2                                                        | 1                               | 0                               |
| 00h                                                                                                                                                                                                                                         | †                          |                       |                                                     |                                          |                                           |                                                  |                                                          |                                           | 0                          | 0                          | 0                                         | 0                          | 0                          | 0                                                        | 0                               | 0                               |
|                                                                                                                                                                                                                                             |                            |                       |                                                     |                                          | (                                         | 6                                                |                                                          |                                           |                            |                            |                                           |                            | , •                        |                                                          |                                 |                                 |
| SPI Slave address[15:0                                                                                                                                                                                                                      | 15                         | 14                    | 13                                                  | 12                                       | 11                                        | 10                                               | 9                                                        | 8                                         | 7                          | 6                          | 5                                         | 4                          | 3                          | 2                                                        | 1                               | 0                               |
| 0000h                                                                                                                                                                                                                                       | Mem                        | Bank                  | 0                                                   | 0                                        | 0                                         | 0                                                | 0                                                        | 0                                         | 0                          | 0                          | 0                                         | 0                          | 0                          | 0                                                        | 0                               | 0                               |
|                                                                                                                                                                                                                                             |                            |                       |                                                     |                                          | -                                         |                                                  | -                                                        |                                           |                            | -                          |                                           |                            |                            |                                                          |                                 |                                 |
| WordAdr = 007Fh                                                                                                                                                                                                                             |                            |                       |                                                     |                                          |                                           |                                                  |                                                          |                                           |                            |                            |                                           |                            |                            |                                                          |                                 |                                 |
| WordAdr[13:0]                                                                                                                                                                                                                               | 1                          |                       | 13                                                  | 12                                       | 11                                        | 10                                               | 9                                                        | 8                                         | 7                          | 6                          | 5                                         | 4                          | 3                          | 2                                                        | 1                               | 0                               |
| 007Fh                                                                                                                                                                                                                                       | +                          |                       | 0                                                   | 0                                        | 0                                         | 0                                                | 0                                                        | 0                                         | 0                          | 1                          | 1                                         | 1                          | 1                          | 1                                                        | 1                               | 1                               |
|                                                                                                                                                                                                                                             |                            |                       |                                                     |                                          |                                           |                                                  |                                                          |                                           |                            |                            |                                           |                            |                            |                                                          |                                 |                                 |
| WordPtr[7:0]                                                                                                                                                                                                                                | 1                          |                       |                                                     |                                          |                                           |                                                  |                                                          |                                           | 7                          | 6                          | 5                                         | 4                          | 3                          | 2                                                        | 1                               | 0                               |
| 7Fh                                                                                                                                                                                                                                         | +                          |                       |                                                     |                                          |                                           |                                                  |                                                          |                                           | 0                          | 1                          | 1                                         | 1                          | 1                          | 1                                                        | 1                               | 1                               |
|                                                                                                                                                                                                                                             |                            |                       |                                                     | !                                        |                                           | <u> </u>                                         |                                                          |                                           | 0                          | -                          |                                           | , •                        |                            | •                                                        |                                 |                                 |
| SPI Slave address[15:0                                                                                                                                                                                                                      | 1 15                       | 14                    | 13                                                  | 12                                       | 11                                        | 10                                               | 9                                                        | 8                                         | 7                          | 6                          | 5                                         | 4                          | 3                          | 2                                                        | 1                               | 0                               |
| 0000h                                                                                                                                                                                                                                       | Mem                        |                       | 0                                                   | 0                                        |                                           | -                                                | -                                                        | -                                         |                            | -                          |                                           |                            |                            | _                                                        |                                 |                                 |
|                                                                                                                                                                                                                                             | mon                        | Dalin                 | U                                                   | U                                        | 0                                         | 0                                                | 0                                                        | 0                                         | 0                          | 1                          | 1                                         | 1                          | 1                          | 1                                                        | 1                               | 1                               |
| WordAdr = 0080h                                                                                                                                                                                                                             | 1                          | Daim                  |                                                     |                                          |                                           |                                                  | -                                                        |                                           |                            |                            |                                           |                            |                            | -                                                        | ,                               |                                 |
| WordAdr = 0080h<br>WordAdr[13:0]                                                                                                                                                                                                            |                            | Dank                  | 13                                                  | 12                                       | 11                                        | 10                                               | 9                                                        | 8                                         | 7                          | 6                          | 5                                         | 4                          | 3                          | 2                                                        | 1                               | 0                               |
| WordAdr = 0080h                                                                                                                                                                                                                             |                            |                       |                                                     |                                          |                                           |                                                  | -                                                        |                                           |                            |                            |                                           |                            |                            | -                                                        | ,                               |                                 |
| WordAdr = 0080h<br>WordAdr[13:0]<br>0080h                                                                                                                                                                                                   |                            |                       | 13<br>0                                             | 12<br>0                                  | 11<br>0                                   | 10<br>0                                          | 9<br><b>0</b>                                            | 8<br>0                                    | 7                          | 6<br>0                     | 5<br>0                                    | 4                          | 3                          | 2                                                        | 1<br>0                          | 0                               |
| WordAdr = 0080h<br>WordAdr[13:0]<br>0080h<br>WordPtr[15:0]                                                                                                                                                                                  | 15                         | 14                    | 13<br><b>0</b><br>13                                | 12<br>0<br>12                            | 11<br>0<br>11                             | 10<br><b>0</b><br>10                             | 9<br><b>0</b><br>9                                       | 8<br><b>0</b><br>8                        | 7 1 7                      | 6<br>0<br>6                | 5<br><b>0</b><br>5                        | 4<br>0<br>4                | 3<br>0<br>3                | 2<br>0<br>2                                              | 1<br>0<br>1                     | 0<br>0                          |
| WordAdr = 0080h<br>WordAdr[13:0]<br>0080h                                                                                                                                                                                                   |                            |                       | 13<br>0                                             | 12<br>0                                  | 11<br>0                                   | 10<br>0                                          | 9<br><b>0</b>                                            | 8<br>0                                    | 7                          | 6<br>0                     | 5<br>0                                    | 4                          | 3                          | 2                                                        | 1<br>0                          | 0                               |
| WordAdr = 0080h<br>WordAdr[13:0]<br>0080h<br>WordPtr[15:0]<br>8100h                                                                                                                                                                         | 15                         | 14<br>0               | 13<br>0<br>13<br>0                                  | 12<br>0<br>12<br>0                       | 11<br>0<br>11<br>0                        | 10<br>0<br>10<br>0                               | 9<br>0<br>9<br>0                                         | 8<br>0<br>8<br>1                          | 7<br>1<br>7<br>0           | 6<br>0<br>6<br>0           | 5<br>0<br>5<br>0                          | 4                          | 3<br>0<br>3<br>0           | 2<br>0<br>2<br>0                                         | 1<br>0<br>1<br>0                | 0<br>0<br>0<br>0                |
| WordAdr = 0080h<br>WordAdr[13:0]<br>0080h<br>WordPtr[15:0]<br>8100h<br>SPI Slave address[15:0]                                                                                                                                              | 15<br>1<br>1<br>1<br>15    | 14<br>0<br>14         | 13<br>0<br>13<br>0<br>13                            | 12<br>0<br>12<br>0                       | 11<br>0<br>11<br>0                        | 10<br><b>0</b><br>10<br><b>0</b><br>10           | 9<br>0<br>9<br>0                                         | 8<br>0<br>8<br>1                          | 7<br>1<br>7<br>0<br>7      | 6<br>0<br>6<br>0           | 5<br>0<br>5<br>0                          | 4<br>0<br>4<br>0           | 3<br>0<br>3<br>0           | 2<br>0<br>2<br>0                                         | 1<br>0<br>1<br>0                | 0<br>0<br>0<br>0                |
| WordAdr = 0080h<br>WordAdr[13:0]<br>0080h<br>WordPtr[15:0]<br>8100h                                                                                                                                                                         | 15                         | 14<br>0<br>14         | 13<br>0<br>13<br>0                                  | 12<br>0<br>12<br>0                       | 11<br>0<br>11<br>0                        | 10<br>0<br>10<br>0                               | 9<br>0<br>9<br>0                                         | 8<br>0<br>8<br>1                          | 7<br>1<br>7<br>0           | 6<br>0<br>6<br>0           | 5<br>0<br>5<br>0                          | 4                          | 3<br>0<br>3<br>0           | 2<br>0<br>2<br>0                                         | 1<br>0<br>1<br>0                | 0<br>0<br>0<br>0                |
| WordAdr = 0080h<br>WordAdr[13:0]<br>0080h<br>WordPtr[15:0]<br>8100h<br>SPI Slave address[15:0]                                                                                                                                              | 15<br>1<br>1<br>1<br>15    | 14<br>0<br>14         | 13<br>0<br>13<br>0<br>13                            | 12<br>0<br>12<br>0                       | 11<br>0<br>11<br>0                        | 10<br><b>0</b><br>10<br><b>0</b><br>10           | 9<br>0<br>9<br>0                                         | 8<br>0<br>8<br>1                          | 7<br>1<br>7<br>0<br>7      | 6<br>0<br>6<br>0           | 5<br>0<br>5<br>0                          | 4<br>0<br>4<br>0           | 3<br>0<br>3<br>0           | 2<br>0<br>2<br>0                                         | 1<br>0<br>1<br>0                | 0<br>0<br>0<br>0                |
| WordAdr = 0080h<br>WordAdr[13:0]<br>0080h<br>WordPtr[15:0]<br>8100h<br>SPI Slave address[15:0]<br>0080h<br>WordAdr = 0F3Fh<br>WordAdr[13:0]                                                                                                 | 15<br>1<br>1<br>1<br>15    | 14<br>0<br>14         | 13<br>0<br>13<br>0<br>13                            | 12<br>0<br>12<br>0                       | 11<br>0<br>11<br>0                        | 10<br><b>0</b><br>10<br><b>0</b><br>10           | 9<br>0<br>9<br>0                                         | 8<br>0<br>8<br>1                          | 7<br>1<br>7<br>0<br>7      | 6<br>0<br>6<br>0           | 5<br>0<br>5<br>0                          | 4<br>0<br>4<br>0           | 3<br>0<br>3<br>0           | 2<br>0<br>2<br>0                                         | 1<br>0<br>1<br>0                | 0<br>0<br>0<br>0                |
| WordAdr = 0080h<br>WordAdr[13:0]<br>0080h<br>WordPtr[15:0]<br>8100h<br>SPI Slave address[15:0]<br>0080h<br>WordAdr = 0F3Fh                                                                                                                  | 15<br>1<br>1<br>1<br>15    | 14<br>0<br>14         | 13<br>0<br>13<br>0<br>13<br>0                       | 12<br>0<br>12<br>0                       | 11<br>0<br>11<br>0<br>11<br>0             | 10<br>0<br>10<br>0                               | 9<br>0<br>9<br>0<br>9<br>0                               | 8<br>0<br>8<br>1<br>8<br>0                | 7<br>1<br>7<br>0<br>7<br>1 | 6<br>0<br>6<br>0           | 5<br>0<br>5<br>0<br>5<br>0                | 4<br>0<br>4<br>0           | 3<br>0<br>3<br>0<br>3<br>0 | 2<br>0<br>2<br>0                                         | 1<br>0<br>1<br>0                | 0<br>0<br>0<br>0<br>0           |
| WordAdr = 0080h<br>WordAdr[13:0]<br>0080h<br>WordPtr[15:0]<br>8100h<br>SPI Slave address[15:0]<br>0080h<br>WordAdr = 0F3Fh<br>WordAdr[13:0]                                                                                                 | 15<br>1<br>1<br>1<br>15    | 14<br>0<br>14         | 13<br>0<br>13<br>0<br>13<br>0<br>13                 | 12<br>0<br>12<br>0<br>12<br>0            | 11<br>0<br>11<br>0<br>11<br>0             | 10<br>0<br>10<br>0<br>10<br>0                    | 9<br>0<br>9<br>0<br>9<br>0                               | 8<br>0<br>1<br>8<br>0                     | 7<br>1<br>7<br>0<br>7<br>1 | 6<br>0<br>6<br>0<br>0      | 5<br>0<br>5<br>0<br>5<br>0                | 4<br>0<br>4<br>0<br>4<br>0 | 3<br>0<br>3<br>0<br>3<br>0 | 2<br>0<br>2<br>0                                         | 1<br>0<br>1<br>0<br>1<br>0      | 0<br>0<br>0<br>0<br>0           |
| WordAdr = 0080h<br>WordAdr[13:0]<br>0080h<br>WordPtr[15:0]<br>8100h<br>SPI Slave address[15:0]<br>0080h<br>WordAdr = 0F3Fh<br>WordAdr[13:0]                                                                                                 | 15<br>1<br>1<br>1<br>15    | 14<br>0<br>14         | 13<br>0<br>13<br>0<br>13<br>0<br>13                 | 12<br>0<br>12<br>0<br>12<br>0            | 11<br>0<br>11<br>0<br>11<br>0             | 10<br>0<br>10<br>0<br>10<br>0                    | 9<br>0<br>9<br>0<br>9<br>0                               | 8<br>0<br>1<br>8<br>0                     | 7<br>1<br>7<br>0<br>7<br>1 | 6<br>0<br>6<br>0<br>0      | 5<br>0<br>5<br>0<br>5<br>0                | 4<br>0<br>4<br>0<br>4<br>0 | 3<br>0<br>3<br>0<br>3<br>0 | 2<br>0<br>2<br>0                                         | 1<br>0<br>1<br>0<br>1<br>0      | 0<br>0<br>0<br>0<br>0           |
| WordAdr = 0080h           WordAdr[13:0]           0080h           WordPtr[15:0]           8100h           SPI Slave address[15:0]           0080h           WordAdr = 0F3Fh           WordAdr[13:0]           0F3Fh                         | 15<br>1<br>Mem             | 14<br>0<br>14<br>Bank | 13<br>0<br>13<br>0<br>13<br>0<br>13<br>0            | 12<br>0<br>12<br>0<br>12<br>0            | 11<br>0<br>11<br>0<br>11<br>0             | 10<br>0<br>10<br>0<br>10<br>0                    | 9<br>0<br>9<br>0<br>9<br>0<br>9<br>0                     | 8<br>0<br>1<br>8<br>0<br>8<br>1           | 7<br>1<br>7<br>0<br>7<br>1 | 6<br>0<br>6<br>0<br>0      | 5<br>0<br>5<br>0<br>5<br>0                | 4<br>0<br>4<br>0<br>4<br>0 | 3<br>0<br>3<br>0<br>3<br>0 | 2<br>0<br>2<br>0<br>2<br>0                               | 1<br>0<br>1<br>0                | 0<br>0<br>0<br>0<br>0           |
| WordAdr = 0080h           WordAdr[13:0]           0080h           WordPtr[15:0]           8100h           SPI Slave address[15:0]           0080h           WordAdr = 0F3Fh           WordAdr[13:0]           0F3Fh           WordPtr[15:0] | 15<br>1<br>15<br>Mem       | 14<br>0<br>14<br>Bank | 13<br>0<br>13<br>0<br>13<br>0<br>13<br>0<br>13<br>0 | 12<br>0<br>12<br>0<br>12<br>0<br>12<br>0 | 11<br>0<br>11<br>0<br>11<br>11<br>1<br>11 | 10<br>0<br>10<br>0<br>10<br>10<br>10<br>10<br>10 | 9<br>0<br>9<br>0<br>9<br>0<br>0<br>9<br>0<br>1<br>9<br>9 | 8<br>0<br>1<br>8<br>0<br>8<br>1<br>8<br>8 | 7<br>1<br>7<br>0<br>7<br>1 | 6<br>0<br>6<br>0<br>6<br>0 | 5<br>0<br>5<br>0<br>5<br>0<br>5<br>1<br>5 | 4<br>0<br>4<br>0<br>4<br>0 | 3<br>0<br>3<br>0<br>3<br>0 | 2<br>0<br>2<br>0<br>2<br>0<br>2<br>1<br>2<br>2<br>2<br>1 | 1<br>0<br>1<br>0<br>1<br>1<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0 |
| WordAdr = 0080h           WordAdr[13:0]           0080h           WordPtr[15:0]           8100h           SPI Slave address[15:0]           0080h           WordAdr = 0F3Fh           WordAdr[13:0]           0F3Fh           WordPtr[15:0] | 15<br>1<br>15<br>Mem<br>15 | 14<br>0<br>14<br>Bank | 13<br>0<br>13<br>0<br>13<br>0<br>13<br>0<br>13<br>0 | 12<br>0<br>12<br>0<br>12<br>0<br>12<br>0 | 11<br>0<br>11<br>0<br>11<br>11<br>1<br>11 | 10<br>0<br>10<br>0<br>10<br>10<br>10<br>10<br>10 | 9<br>0<br>9<br>0<br>9<br>0<br>0<br>9<br>0<br>1<br>9<br>9 | 8<br>0<br>1<br>8<br>0<br>8<br>1<br>8<br>8 | 7<br>1<br>7<br>0<br>7<br>1 | 6<br>0<br>6<br>0<br>6<br>0 | 5<br>0<br>5<br>0<br>5<br>0<br>5<br>1<br>5 | 4<br>0<br>4<br>0<br>4<br>0 | 3<br>0<br>3<br>0<br>3<br>0 | 2<br>0<br>2<br>0<br>2<br>0<br>2<br>1<br>2<br>2<br>2<br>1 | 1<br>0<br>1<br>0<br>1<br>1<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0 |

\* The data stored in bit15, bit7 of WordPtr is defined by EBV format.



## ■ 4.2 Memory Map

#### ■ 4.2.1 Memory bank

The Non-volatile memory (FeRAM) of this LSI is divided into the following four banks.

Table 4.2.1 Memory map

| E                | Bank       | Add            | Command Accessibility |          |                      |            |            |                      |          |             |           |  |
|------------------|------------|----------------|-----------------------|----------|----------------------|------------|------------|----------------------|----------|-------------|-----------|--|
| MemBank<br>[1:0] | Definition | WordAdr[13:0]  | WordPtr[15:8]         | RF       |                      |            |            |                      |          |             | SPI Slave |  |
|                  |            |                | WordPtr[7:0]          | Read     | Write                | BlockWrite | BlockErase | BlockPermalock       | Select   | SpiRead     | SpiWrite  |  |
| 11               | USER       | 0000h to 0EFFh | 00h to 9D7Fh          | <b>~</b> | <ul> <li></li> </ul> | <b>~</b>   | <b>~</b>   | <ul> <li></li> </ul> | <b>~</b> | <b>&gt;</b> | <b>~</b>  |  |
| 11               | USER       | 0F00h to 0F3Fh | 9E00h to 9E3Fh        | >        | <                    | ∕*         | ∕*         |                      | >        | >           | _         |  |
| 10               | TID        | 0000h to 000Ch | 00h to 0Ch            | <        |                      |            |            |                      | <        | >           |           |  |
| 01               | EPC        | 0000h to 001Fh | 00h to 1Fh            | <        | <                    | >          | <          | _                    | >        | >           | -         |  |
| 00               | RESERVED   | 0000h to 003Fh | 00h to 3Fh            | >        | <b>&gt;</b>          |            | -          | —                    |          | -           | —         |  |

\*. The command works for executing extended application on some specific address.

USER, TID, EPC, and RESERVED memory banks contain the data in the format defined by EPCglobal C1G2 specification (Chapter 6.3.2.1). In each memory bank, the WordAdr and the WordPtr start from zero (00h).

## ■ 4.2.2 TID bank

The memory map of TID bank is shown in Table 4.2.2. TID bank can only be read, and the setting values cannot be changed. For details, please refer to EPCglobal Class 1 Generation 2 standard.

|         |         | MSB         |                             |       |        |       |      |      |      |     |   | L | _SB    | 5                |
|---------|---------|-------------|-----------------------------|-------|--------|-------|------|------|------|-----|---|---|--------|------------------|
| WordAdr | WordPtr | 15 14 13 12 | 11 10                       | 9     | 8      | 7     | 6    | 5    | 4    | 3   | 2 | 1 | 0      | Setting<br>Value |
| 00h     | 00h     | Allocatio   | on Class                    |       |        |       |      | D    | esig | ner |   |   |        | E281h            |
| 01h     | 01h     | Designer    | Designer Product ID Version |       |        |       |      |      |      |     |   |   | 0081h  |                  |
| 02h     | 02h     |             |                             |       |        |       |      |      |      |     |   |   | 3C00h  |                  |
| 03h     | 03h     |             |                             | Seria | al Nu  | umbe  | ər   |      |      |     |   |   |        | unique           |
| 04h     | 04h     |             |                             |       |        |       |      |      |      |     |   |   | unique |                  |
| 05h     | 05h     |             |                             | Seria | al Nu  | umbe  | er   |      |      |     |   |   |        | unique           |
| 06h     | 06h     |             | option                      | al co | mm     | and   | supp | oort |      |     |   |   |        | 1DDEh            |
| 07h     | 07h     |             | Blo                         | ckEra | ase    | para  | mete | ər   |      |     |   |   |        | 0002h            |
| 08h     | 08h     |             | Blo                         | ckEra | ase    | para  | mete | ər   |      |     |   |   |        | 0310h            |
| 09h     | 09h     |             | Blo                         | ckWı  | rite p | barar | nete | r    |      |     |   |   |        | 0002h            |
| 0Ah     | 0Ah     |             | BlockWrite parameter        |       |        |       |      |      |      |     |   |   | 0310h  |                  |
| 0Bh     | 0Bh     |             | Per                         | malc  | ock E  | Block | siz  | e    |      |     |   |   |        | 0200h            |
| 0Ch     | 0Ch     |             | User memory size            |       |        |       |      |      |      |     |   |   | 0F00h  |                  |

Table 4.2.2 TID bank memory map



#### ■ 4.2.3 EPC bank

The memory map of EPC bank is shown in Table 4.2.3.

|         |         | MSB |    |    |    |    |     |      |       |       |      |      |   |   |   | l | LSB | 5                |
|---------|---------|-----|----|----|----|----|-----|------|-------|-------|------|------|---|---|---|---|-----|------------------|
| WordAdr | WordPtr | 15  | 14 | 13 | 12 | 11 | 10  | 9    | 8     | 7     | 6    | 5    | 4 | 3 | 2 | 1 | 0   | Default<br>Value |
| 00h     | 00h     |     |    |    |    |    |     | Sto  | ored  | CRC   | ;    |      |   |   |   |   |     |                  |
| 01h     | 01h     |     |    |    |    |    |     | S    | tored | I PC  |      |      |   |   |   |   |     | 3400h            |
| 02h     | 02h     |     |    |    |    |    |     | E    | PC o  | lata  |      |      |   |   |   |   |     | 0000h            |
| 03h     | 03h     |     |    |    |    | E  | EPC | data | Seri  | al Nu | ımbe | er*) |   |   |   |   |     | unique           |
| 04h     | 04h     |     |    |    |    | E  | EPC | data | Seri  | al Nu | Imbe | er*) |   |   |   |   |     | unique           |
| 05h     | 05h     |     |    |    |    | E  | EPC | data | Seri  | al Nu | ımbe | er*) |   |   |   |   |     | unique           |
| 06h     | 06h     |     |    |    |    |    |     | E    | PC o  | lata  |      |      |   |   |   |   |     | 0000h            |
| 07h     | 07h     |     |    |    |    |    |     | E    | PC o  | lata  |      |      |   |   |   |   |     | 0000h            |
| 08h     | 08h     |     |    |    |    |    |     | E    | PC o  | lata  |      |      |   |   |   |   |     | 0000h            |
| 09h     | 09h     |     |    |    |    |    |     | E    | PC o  | lata  |      |      |   |   |   |   |     | 0000h            |
| 0Ah     | 0Ah     |     |    |    |    |    |     | E    | PC o  | lata  |      |      |   |   |   |   |     | 0000h            |
| 0Bh     | 0Bh     |     |    |    |    |    |     | E    | PC o  | lata  |      |      |   |   |   |   |     | 0000h            |
| 0Ch     | 0Ch     |     |    |    |    |    |     | E    | PC o  | lata  |      |      |   |   |   |   |     | 0000h            |
| 0Dh     | 0Dh     |     |    |    |    |    |     | E    | PC o  | lata  |      |      |   |   |   |   |     | 0000h            |
| 0Eh     | 0Eh     |     |    |    |    |    |     | E    | PC o  | lata  |      |      |   |   |   |   |     | 0000h            |
| 0Fh     | 0Fh     |     |    |    |    |    |     | E    | PC o  | lata  |      |      |   |   |   |   |     | 0000h            |
| 10h     | 10h     |     |    |    |    |    |     | E    | PC o  | lata  |      |      |   |   |   |   |     | 0000h            |
|         |         |     |    |    |    |    |     | E    | PC o  | lata  |      |      |   |   |   |   |     | 0000h            |
| 1Fh     | 1Fh     |     |    |    |    |    |     | E    | PC d  | lata  |      |      |   |   |   |   |     | 0000h            |

Table 4.2.3 EPC bank memory map

\*. As default value, the same serial number is stored in WordAdr=03h to 05h of EPC bank as the number stored in WordAdr=03h to 05h of TID bank.

The length of EPC is specified by EPC length field of Stored PC. The length is preprogrammed to 6 (words) as default value, which indicates 6words of EPC (WordAdr 02h to 07h). It is possible to expand the length up to 30words (WordAdr 02h to 1Fh) by programming the data of EPC length field

This LSI does not support XPC\_W1 and XPC\_W2. Stored CRC is not preprogrammed, because it is reflected after the response to ACK command.

#### ■ 4.2.4 USER bank

USER bank of this LSI consists of 3,840words of Data field and 64words of Application field.

## ■ 4.2.4.1 USER bank (Data field)

Data field of USER bank is divided into 8 Area groups as shown in Table.4.2.4.1.

|              | MSB LSB        |    |                      |                      |    |    |    |      |      |      |     |       | 3 |   |       |   |   |                  |
|--------------|----------------|----|----------------------|----------------------|----|----|----|------|------|------|-----|-------|---|---|-------|---|---|------------------|
| WordAdr      | WordPtr        | 15 | 14                   | 13                   | 12 | 11 | 10 | 9    | 8    | 7    | 6   | 5     | 4 | 3 | 2     | 1 | 0 | Default<br>Value |
| 000h to 1FFh | 00h to 837Fh   |    |                      | User data (Area0) 00 |    |    |    |      |      |      |     |       |   |   | 0000h |   |   |                  |
| 200h to 3FFh | 8400h to 877Fh |    |                      |                      |    |    | ι  | Jser | data | (Are | a1) |       |   |   |       |   |   | 0000h            |
| 400h to 5FFh | 8800h to 8B7Fh |    |                      |                      |    |    | ι  | Jser | data | (Are | a2) |       |   |   |       |   |   | 0000h            |
| 600h to 7FFh | 8C00h to 8F7Fh |    |                      |                      |    |    | ι  | Jser | data | (Are | a3) |       |   |   |       |   |   | 0000h            |
| 800h to 9FFh | 9000h to 937Fh |    |                      |                      |    |    | ι  | Jser | data | (Are | a4) |       |   |   |       |   |   | 0000h            |
| A00h to BFFh | 9400h to 977Fh |    |                      |                      |    |    | ι  | Jser | data | (Are | a5) |       |   |   |       |   |   | 0000h            |
| C00h to DFFh | 9800h to 9B7Fh |    | User data (Area6) 00 |                      |    |    |    |      |      |      |     | 0000h |   |   |       |   |   |                  |
| E00h to EFFh | 9C00h to 9D7Fh |    |                      |                      |    |    | l  | Jser | data | (Are | a7) |       |   |   |       |   |   | 0000h            |

Table 4.2.4.1 USER bank (Data field) memory map

Each area can be protected by Area Password (refer to Chapter6.2). And the same area is allocated for PermalockBlock (refer to Chapter5.1.3).

Regarding the memory access from RF communication (BlockWrite, BlockErase, and Read command), when the address reaches to WordPtr=8F7Fh (WordAdr=7FFh) among the range specified by WordCount, the address



to be followed will be WordPtr=9000h (WordAdr=800h). In the same case from SPI slave communication (SpiWrite, SpiRead command), the address counter rollovers from WordAdr=7FFh to 000h.

## ■ 4.2.4.2 USER bank (Application field)

Application field of USER bank allocated in WordPtr=9E00h to 9E3Fh (WordAdr=F00h to F3Fh) is used for the extensive applications described in Chapter 7, which consists of 16bit registers, command control, and data storage. This field is writable only from RF interface. The registers located in WordPtr=9E00h to 9E03h

(WordAdr=F00h to F03h) are volatile, and the stored value will be reset to "0", if the internal voltage drops below the lower limit. Memory map of the field is shown in Table.4.2.4.2. The data stored in WordPtr=9E10h to 9E13h (WordAdr=F10h to F13h) are non-volatile and they are updated with the latest data. The area located in WordPtr=9E2xh and 9E3xh (WordAdr=F2xh and F3xh), which is allocated for SPI master application, consists of volatile memory and non-volatile memory.

|         | MSB     |     |                         |       |      |       |      |      |       |       |            |      | L    | LSB   |        |          |    |       |               |
|---------|---------|-----|-------------------------|-------|------|-------|------|------|-------|-------|------------|------|------|-------|--------|----------|----|-------|---------------|
| WordAdr | WordDtr | 15  | 11                      | 12    | 10   | 11    | 10   | 9    | 8     | 7     | 6          | 5    | 4    | 3     | 2      | 1        | 0  | Reset | Volatile      |
| voruAu  | wordPit | 15  | 14                      | 13    | 12   | 11    | 10   | 9    | 0     | 1     | 0          | 5    | 4    | 3     | 2      | 1        | 0  | Value | /Non-Volatile |
| F00h    | 9E00h   |     |                         |       |      |       |      | GP   | IO S  | ettir | ng         |      |      |       |        |          |    | 0000h | Volatile      |
| F01h    | 9E01h   |     | Key Matrix scan setting |       |      |       |      |      |       |       |            |      |      |       | 0000h  | Volatile |    |       |               |
| F02h    | 9E02h   |     | SPI Master setting      |       |      |       |      |      |       |       |            |      |      |       | 0000h  | Volatile |    |       |               |
| F03h    | 9E03h   |     |                         |       |      |       | ١    | /DO  | UT3   | set   | ting       |      |      |       |        |          |    | 0000h | Volatile      |
| F04h    | 9E04h   |     |                         |       |      |       |      | R    | eser  | ved   |            |      |      |       |        |          |    | 0000h |               |
| F05h    | 9E05h   |     |                         |       |      |       |      | R    | eser  | ved   |            |      |      |       |        |          |    | 0000h |               |
|         |         |     |                         |       |      |       |      | R    | eser  | ved   |            |      |      |       |        |          |    | 0000h |               |
| F0Fh    | 9E0Fh   |     |                         |       |      |       |      | R    | eser  | ved   |            |      |      |       |        |          |    | 0000h |               |
| F10h    | 9E10h   | Key | Ма                      | atrix | scar | l col | mma  | nd c | ontro | ol ar | nd Pr      | esse | ed K | ey c  | lata l | buffe    | er | 0000h | Non-Volatile  |
| F11h    | 9E11h   |     |                         |       |      |       | Pres | sed  | Key   | data  | a buf      | fer  |      |       |        |          |    | 0000h | Non-Volatile  |
| F12h    | 9E12h   |     |                         |       |      |       | Pres | sed  | Key   | data  | ata buffer |      |      |       |        |          |    | 0000h | Non-Volatile  |
| F13h    | 9E13h   |     |                         |       |      |       | Pres | sed  | Key   | data  | a buf      | fer  |      |       |        |          |    | 0000h | Non-Volatile  |
| F14h    | 9E14h   |     |                         |       |      |       |      | R    | eser  | ved   |            |      |      |       |        |          |    | 0000h |               |
|         |         |     | Reserved                |       |      |       |      |      |       |       | 0000h      |      |      |       |        |          |    |       |               |
| F1Fh    | 9E1Fh   |     | Reserved                |       |      |       |      |      |       |       |            |      |      | 0000h |        |          |    |       |               |
| F2xh    | 9E2xh   |     | Application area        |       |      |       |      |      |       |       |            |      |      |       | 0000h  | -        |    |       |               |
| F3xh    | 9E3xh   |     | Application area        |       |      |       |      |      |       |       |            |      |      |       | 0000h  | -        |    |       |               |

Table 4.2.4.2 USER bank (Application field) memory map

## ■ 4.2.5 RESERVED bank

RESERVED bank is used for Password data management.

32bits Password can be set by 2steps of 16bits writing, 1st for [31:16] and 2nd for [15:0] by Req\_RN and Write command as a set of sequence respectively without any other command between the steps.

| Table 4.2.5 RESERVED b | bank memory map |
|------------------------|-----------------|
|------------------------|-----------------|

|         |         | MSB |      |       | -    | -     |       |        |        |       |      |    |   |       |    | L | .SB | J.               |
|---------|---------|-----|------|-------|------|-------|-------|--------|--------|-------|------|----|---|-------|----|---|-----|------------------|
| WordAdr | WordPtr | 15  | 14   | 13    | 12   | 11    | 10    | 9      | 8      | 7     | 6    | 5  | 4 | 3     | 2  | 1 | 0   | Default<br>Value |
| 00h     | 00h     |     |      |       |      |       | K     | ill pa | sswo   | ord   |      |    | [ | 31:16 | 6] |   |     | 0000h            |
| 01h     | 01h     |     |      |       |      |       | K     | ill pa | sswo   | ord   |      |    | [ | 15:0] |    |   |     | 0000h            |
| 02h     | 02h     |     |      |       |      | A     | Acces | s pa   | sswo   | ord   |      |    | [ | 31:16 | 6] |   |     | 0000h            |
| 03h     | 03h     |     |      |       |      | A     | Acces | s pa   | sswo   | ord   |      |    | ] | 15:0] |    |   |     | 0000h            |
| 04h     | 04h     |     |      |       |      |       |       | R      | eser   | ved   |      |    |   |       |    |   |     | 0000h            |
|         |         |     |      |       |      |       |       |        |        |       |      |    |   |       |    |   |     | 0000h            |
| 1Fh     | 1Fh     |     |      |       |      |       |       | R      | eser   | ved   |      |    |   |       |    |   |     | 0000h            |
| 20h     | 20h     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | D) | [ | 31:16 | 6] |   |     | 0000h            |
| 21h     | 21h     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | D) | [ | 15:0] |    |   |     | 0000h            |
| 22h     | 22h     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | 1) | [ | 31:16 | 5] |   |     | 0000h            |
| 23h     | 23h     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | 1) | [ | 15:0] |    |   |     | 0000h            |
| 24h     | 24h     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | 2) | [ | 31:16 | 6] |   |     | 0000h            |
| 25h     | 25h     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | 2) | ] | 15:0] |    |   |     | 0000h            |
| 26h     | 26h     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | 3) | [ | 31:16 | 6] |   |     | 0000h            |
| 27h     | 27h     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | 3) | [ | 15:0] |    |   |     | 0000h            |
| 28h     | 28h     |     |      |       |      |       | sswo  |        |        |       |      |    | [ | 31:16 | 6] |   |     | 0000h            |
| 29h     | 29h     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | 4) | [ | 15:0] |    |   |     | 0000h            |
| 2Ah     | 2Ah     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | 5) | [ | 31:16 | 5] |   |     | 0000h            |
| 2Bh     | 2Bh     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | 5) | [ | 15:0] |    |   |     | 0000h            |
| 2Ch     | 2Ch     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | 6) | [ | 31:16 | 6] |   |     | 0000h            |
| 2Dh     | 2Dh     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | 6) | ] | 15:0] |    |   |     | 0000h            |
| 2Eh     | 2Eh     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | 1g) ( | Area | 7) | [ | 31:16 | 5] |   |     | 0000h            |
| 2Fh     | 2Fh     |     |      |       | Area | a pas | sswo  | rd (S  | Settir | ng) ( | Area | 7) | [ | 15:0] |    |   |     | 0000h            |
| 30h     | 30h     |     | Area | a pas | swo  | ord ( | Auth  | entica | ation  | ) (   | Area | 0) | [ | 31:16 | 6] |   |     | 0000h            |
| 31h     | 31h     |     | Area | a pas | swo  | ord ( | Auth  | entica | ation  | ) (   | Area | 0) | [ | 15:0] |    |   |     | 0000h            |
| 32h     | 32h     |     | Area | a pas | swo  | ord ( | Auth  | entica | ation  | ) (   | Area | 1) | [ | 31:16 | 6] |   |     | 0000h            |
| 33h     | 33h     |     | Area | a pas | swo  | ord ( | Auth  | entica | ation  | ) (   | Area | 1) | ] | 15:0] |    |   |     | 0000h            |
| 34h     | 34h     |     | Area | a pas | sswo | ord ( | Auth  | entica | ation  | ) (   | Area | 2) | [ | 31:16 | 5] |   |     | 0000h            |
| 35h     | 35h     |     | Area | a pas | swo  | ord ( | Auth  | entica | ation  | ) (   | Area | 2) | [ | 15:0] |    |   |     | 0000h            |
| 36h     | 36h     |     | Area | a pas | swo  | ord ( | Auth  | entica | ation  | ) (   | Area | 3) | [ | 31:16 | 6] |   |     | 0000h            |
| 37h     | 37h     |     | Area | a pas | sswo | ord ( | Auth  | entica | ation  | ) (   | Area | 3) | [ | 15:0] |    |   |     | 0000h            |
| 38h     | 38h     |     | Area | a pas | swo  | ord ( | Auth  | entica | ation  | ) (   | Area | 4) | [ | 31:16 | 6] |   |     | 0000h            |
| 39h     | 39h     |     | Area | a pas | swo  | ord ( | Auth  | entica | ation  | ) (   | Area | 4) | [ | 15:0] |    |   |     | 0000h            |
| 3Ah     | 3Ah     |     | Area | a pas | swo  | ord ( | Auth  | entic  | ation  | ) (   | Area | 5) | [ | 31:16 | 6] |   |     | 0000h            |
| 3Bh     | 3Bh     |     | Area | a pas | swo  | ord ( | Auth  | entic  | ation  | ) (   | Area | 5) | [ | 15:0] |    |   |     | 0000h            |
| 3Ch     | 3Ch     |     | Area | a pas | sswo | ord ( | Auth  | entic  | ation  | ) (   | Area | 6) | [ | 31:16 | 6] |   |     | 0000h            |
| 3Dh     | 3Dh     |     | Area | a pas | swo  | ord ( | Auth  | entic  | ation  | ) (   | Area | 6) | [ | 15:0] |    |   |     | 0000h            |
| 3Eh     | 3Eh     |     | Area | a pas | swo  | ord ( | Auth  | entic  | ation  | ) (   | Area | 7) | [ | 31:16 | 5] |   |     | 0000h            |
| 3Fh     | 3Fh     |     | Area | a pas | sswo | ord ( | Auth  | entic  | ation  | ) (   | Area | 7) | [ | 15:0] |    |   |     | 0000h            |

## ■ 5 Command (Battery-less operation)

#### ■ 5.1 RF communication command

All mandatory commands and optional commands specified in EPCglobal C1G2 Ver.1.2.0. (Chapter 6.3.2.11) are supported as described in Table 5.1.

However, Parts of the specification of BlockWrite, BlockErase, BlockPermalock command (Optional command), and Read command (Mandatory command) are different from EPC C1G2 standard as described in Chapter 5.1.1, 5.1.2, 5.1.3, and 5.1.4.

| Туре      | Command name   | Command code |
|-----------|----------------|--------------|
| Mandatory | QueryRep       | 00           |
|           | ACK            | 01           |
|           | Query          | 1000         |
|           | QueryAdjust    | 1001         |
|           | Select         | 1010         |
|           | NAK            | 1100 0000    |
|           | Req_RN         | 1100 0001    |
|           | Read           | 1100 0010    |
|           | Write          | 1100 0011    |
|           | Kill           | 1100 0100    |
|           | Lock           | 1100 0101    |
| Optional  | Access         | 1100 0110    |
|           | BlockWrite     | 1100 0111    |
|           | BlockErase     | 1100 1000    |
|           | BlockPermalock | 1100 1001    |

\*Differences from EPCglobal C1G2 Ver. 1.2.0

(1) Stored CRC-16

If Stored PC and/or EPC data stored in EPC bank are renewed, StoredCRC-16 will not be updated when the power is turned on, but it is updated on the response to ACK command without truncation.

(2)UMI

UMI is fixed to "1" on this LSI. According to EPCglobal C1G2 Ver. 1.2.0, UMI stored in bit[10] of StoredPC in EPC bank shall be calculated by OR of bit[12:8] of WordAdr=00h in USER bank.

(3)Response to Read command when the WordCount is specified to 00h

According to EPCglobal C1G2 Ver. 1.2.0, the tag shall reply the whole data from the specified WordPtr to the last address of the bank, when the WordCount is specified to 00h.

USER bank of this LSI consists of 8 areas and can be protected by Area Password. Therefore, if parts of the data to be read is protected by Area Password, any data cannot be read and error code "04h" (indicating Memory locked) will be replied.

(4)Commands for extended applications

As described in Chapter 7, Write, BlockWrite and BlockErase commands are used for executing extended application when the commands access to the specific address allocated in WordPtr=9E00h to 9E3Fh (WordAdr=F00h to F3Fh) of USER bank. In this case, these commands do not work as simple Write and Erase command.

(5)Area Password



Area Password for data protection is stored in WordPtr=20h to 3Fh (WordAdr=20h to 3Fh) of RESERVED bank. As described in Chapter 6, Write command is used for Area Password setting and authentication when the command accesses to the specific address.

#### ■ 5.1.1 BlockWrite (Optional command)

BlockWrite command format is shown in Table5.1.1. Part of the function are different from what is specified in EPCglobal C1G2 Ver.1.2.0 as following.

•MemBank specifies only EPC and USER bank. If BlockWrite command is executed on RESERVED and TID bank, error code "03h" (indicating Memory overrun) is replied. In this case, the data will not be written into the specified address.

• WordCount specifies the number of words to be written. If 00h is specified, the command will be ignored. When the specified address is located in EPC bank or some address located in WordPtr=00h to 8F7Fh (WordAdr=000h to 7FFh) of USER bank, WordCount shall be 16(10h) or less. If it is 17(11h) or more, error

code "03h" (indicating Memory overrun) will be replied. When the specified address is located in WordPtr=9000h to 9D7Fh (WordAdr=800h to EFFh), WordCount shall be specified up to 255(FFh). In this case, the data up to 16words is to be written into the specified address after CRC verification, but the data over 16words is to be written continuously without CRC verification. Therefore if the communication is terminated without any response because of low power detection, some data may have been written before the termination. When the specified address is all or partially locked by the BlockPermalock command or protected by Area Password, any data will not be written and error code "04h" (indicating Memory locked) is replied.

|                | Command   | MemBank           | WordPtr                        | WordCount                      | Data                  | RN     | CRC    |
|----------------|-----------|-------------------|--------------------------------|--------------------------------|-----------------------|--------|--------|
| Number of bits | 8         | 2                 | EBV                            | 8                              | WordCount *16         | 16     | 16     |
| Description    | 1100 0111 | 01:EPC<br>11:USER | Starting<br>Address<br>Pointer | Number of<br>words to<br>write | Data to be<br>written | handle | CRC-16 |

Table 5.1.1 – BlockWrite command

When the address reaches WordPtr=8F7Fh (WordAdr=7FFh) among the range specified by WordCount, the address to be followed will be WordPtr=9000h (WordAdr=800h).

\* In SPI slave communication, the address counter rollovers from WordAdr=7FFh to 000h.

#### ■ 5.1.2 BlockErase (Optional command)

BlockErase command format is shown in Table5.1.2. Parts of the function are different from what is specified in EPCglobal C1G2 Ver.1.2.0 as described as follows.

• MemBank specifies only EPC and USER bank. If BlockErase command is executed on RESERVED and TID bank, error code "03h" (indicating Memory overrun) is replied. In this case, the data will not be erased.

• WordCount specifies the number of data to be erased. If 00h is specified, the command will be ignored. 01h to 10h shall be specified. When the specified address is all or partially locked by the BlockPermalock command or protected by Area Password, any data will not be erased and error code "04h" (indicating Memory locked) is replied.



| Table 5.1.2 - BlockErase Command | d |
|----------------------------------|---|
|----------------------------------|---|

|                   | Command   | MemBank           | WordPtr                        | WordCount                      | RN     | CRC    |
|-------------------|-----------|-------------------|--------------------------------|--------------------------------|--------|--------|
| Number of<br>bits | 8         | 2                 | EBV                            | 8                              | 16     | 16     |
| Decription        | 1100 1000 | 01:EPC<br>11:USER | Starting<br>Address<br>Pointer | Number of<br>words to<br>erase | handle | CRC-16 |

#### ■ 5.1.3 BlockPermalock (Optional command)

The unit of Block to be locked is defined as 512 words for this LSI. The BlockPermalock command can be executed to the 8 blocks of USER bank which is 7 areas of 8k bits and 1 area of 4k bits.

## ■ 5.1.3.1 BlockPermalock (Setting)

The format of the BlockPermalock command for Permalock setting is shown in Table 5.1.3.1. The Read/Lock value is set to "1", and the specified bock will be locked permanently. Lock data field is described in Chapter 5.1.3.3.

|                   | Command   | RFU                  | Read<br>/Lock   | MemBank | BlockPtr     | Block<br>Range | LockData                                                             | RN     | CRC    |
|-------------------|-----------|----------------------|-----------------|---------|--------------|----------------|----------------------------------------------------------------------|--------|--------|
| Number of<br>bits | 8         | 8                    | 1               | 2       | 8            | 8              | 16                                                                   | 16     | 16     |
| Description       | 1100 1001 | 000<br>0<br>000<br>0 | 1:Perma<br>Lock | 11:USER | 0000<br>0000 | 0000<br>0001   | 0:Retain<br>current<br>permalock<br>setting<br>1:Assert<br>permalock | handle | CRC-16 |

Table 5.1.3.1 – BlockPermalock command (Permalock)

There is a limitation as follows. If any other value is set, error code "03h" (indicating Memory overrun) will be replied and permalock operation is terminated.

• MemBank: Only executed for USER bank.

· BlockPtr: Only 00h is supported.

• BlockRange: Only 01h is supported.

## ■ 5.1.3.2 BlockPermalock (Read)

The format of the BlockPermaLock command for reading permalock status is shown in Table 5.1.3.2.1. The Read/Lock value is set to "0", and the permalock status of 8blocks of USER bank can be read. The response is shown in Table 5.1.3.2.2.

|                   | Command   | RFU          | Read<br>/Lock | MemBank | BlockPtr     | Block<br>Range | RN     | CRC    |
|-------------------|-----------|--------------|---------------|---------|--------------|----------------|--------|--------|
| Number of<br>bits | 8         | 8            | 1             | 2       | 8            | 8              | 16     | 16     |
| Description       | 1100 1001 | 0000<br>0000 | 0:Read        | 11:USER | 0000<br>0000 | 0000<br>0001   | handle | CRC-16 |

Table 5.1.3.2.1 – BlockPermalock command (Read)

 Table 5.1.3.2.2 – Response to BlockPermalock command (Read)

|                | Header | LockData       | RN     | CRC    |
|----------------|--------|----------------|--------|--------|
| Number of bits | 1      | 16             | 16     | 16     |
| Description    | 0      | Permalock bits | handle | CRC-16 |

There is a limitation as follows. If any other value is set, error code "03h" (indicating Memory overrun) will be replied and reading operation is terminated.

• MemBank: Only executed for USER bank.

· BlockPtr: Only 00h is supported.

• BlockRange: Only 01h is supported.

## ■ 5.1.3.3 BlockPermalock and Permalocked Block

16bits of Lock data and corresponded block is shown in Table 5.1.3.3.

| Bit | Area | WordAdr      | WordPtr        |
|-----|------|--------------|----------------|
| 15  | 0    | 000h to 1FFh | 00h to 837Fh   |
| 14  | 1    | 200h to 3FFh | 8400h to 877Fh |
| 13  | 2    | 400h to 5FFh | 8800h to 8B7Fh |
| 12  | 3    | 600h to 7FFh | 8C00h to 8F7Fh |
| 11  | 4    | 800h to 9FFh | 9000h to 937Fh |
| 10  | 5    | A00h to BFFh | 9400h to 977Fh |
| 9   | 6    | COOh to DFFh | 9800h to 9B7Fh |
| 8   | 7    | E00h to EFFh | 9COOh to 9D7Fh |
| 7   | —    | —            | _              |
| 6   | _    | —            | _              |
| 5   | —    | —            | _              |
| 4   | —    | —            | _              |
| 3   | —    | —            | _              |
| 2   | _    | _            | _              |
| 1   | _    | _            | _              |
| 0   | _    | —            | -              |

Table 5.1.3.3 – BlockPermalock data

When Lock data is set by BlockPermalock command (refer to Chapter 5.1.3.1), Bit[7:0] shall be set to "0" because of no target block.

## ■ 5.1.4 Read (Mandatory)

The command format is shown in Table 5.1.4.1

Table 5.1.4.1– Read command

|                   | Command   | MemBank                                    | WordPtr                        | WordCount                     | RN     | CRC    |
|-------------------|-----------|--------------------------------------------|--------------------------------|-------------------------------|--------|--------|
| Number of<br>bits | 8         | 2                                          | EBV                            | 8                             | 16     | 16     |
| Description       | 1100 0010 | 00:RESERVED<br>01:EPC<br>10:TID<br>11:USER | Starting<br>Address<br>Pointer | Number of<br>Words to<br>read | handle | CRC-16 |

When the address reaches WordPtr=8F7Fh (WordAdr=7FFh) among the range specified by WordCount, the address to be followed will be WordPtr=9000h (WordAdr=800h).

\* In SPI slave communication, the address counter rollovers from WordAdr=7FFh to 000h.



When WordCount is set to "00h", the response will be as shown in Table 5.1.4.2.

| MemBank     | Area Password                    | Response                                                                                                                              |
|-------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 11:USER     | Zero Password<br>(All Area)      | The data from the specified WordPtr (Table 5.1.4.1) to 9D7Fh (WordAdr=EFFh) are replied as normal response.                           |
|             | Non zero Password<br>(Some Area) | No data is read. Error code "04h" (indicating<br>Memory locked) is replied. (refer to Chapter 2.4)                                    |
| 10:TID      | _                                | The data from the specified WordPtr (Table 5.1.4.1) to 0Fh are replied as normal response.                                            |
| 01:EPC      | _                                | The data from the specified WordPtr (Table 5.1.4.1) to the WordPtr corresponding to the length of EPC are replied as normal response. |
| 00:RESERVED | -                                | The data from the specified WordPtr (Table 5.1.4.1) to 3Fh are replied as normal response.                                            |

Table 5.1.4.2- Response to Read command when WordCount is set to "00h"

#### ■ 5.1.5 Lock (Mandatory)

The command format is shown in Table 5.1.5. When the Access Password (WordAdr=02h to 03h(WordPtr=02h to 03h)) is locked by setting Payload bit [17,16] and [7,6], Area Passwords(WordAdr=20h to 3Fh (WordPtr=20h to 3Fh)) are also locked automatically.

Regardless whether the password is locked or not, Area Password authentication can be executed by Write command. The detail of the command is specified in EPCglobal C1G2 Ver.1.2.0 (Chapter 6.3.2.11.3.5).

|                | Command   | Payload                | RN     | CRC    |
|----------------|-----------|------------------------|--------|--------|
| Number of bits | 8         | 20                     | 16     | 16     |
| Description    | 1100 0101 | Mask and Action Fields | handle | CRC-16 |

Table 5.1.5– Lock command

## ■ 5.2 SPI slave communication command

This LSI will support 3 types of operate-code for SPI slave interface. The operate-code is 8bits code described in Table 5.2. If other codes are used, the command is ignored. If XCS is raised during the input sequence of operate-code, the command cannot be executed.

| Code name | Function                                             | Operate-code |
|-----------|------------------------------------------------------|--------------|
| SpiRead   | Read data in units of 16bits from USER memory area.  | 0000 0011    |
| SpiWrite  | Write data in units of 16bits into USER memory area. | 0000 0010    |
| SpiRDSR   | Read 16bits of Error information register(SPI slave) | 0000 0101    |

Table 5.2 - Operate-code for SPI slave interface

## 5.2.1 SpiRead

SpiRead command is to read memory data in units of 16bits (1word). The address shall be specified as 2bits of MemBank followed by 14bits of WordAdr (Total 16bits). The command sequence is described in Figure 5.2.1. Through DI pin, the following data shall be input synchronously to the rising edge of SCK after XCS is fallen. SpiRead operate code (8bit:03h)

MemBank (2bit)

WordAdr (14bit)

USER bank, TID bank and EPC bank are readable banks. The upper 2 bit of WordAdr shall be fixed to "00". In response to the command input, the reading data will be output from DO synchronously to the falling edge of SCK. During the period of output from DO, any input from DI will be ignored. SpiRead command will be terminated when XCS is raised, and the output from DO will be "Hi-Z".

The command keeps on reading with automatically incremented address by continuous 16cycles of clock to SCK before XCS rising. If WordAdr is specified as 000h to 7FFh of USER bank and the incremented address reaches to WordAdr=7FFh, the address will roll over to WordAdr=000h and read operation is continued. If WordAdr is specified as 800h to EFFh of USER bank and the incremented address reaches to WordAdr=EFFh, the address will not roll over to WordAdr=800h. In this case, the DO output will be "0".

When Membank is specified as TID bank or EPC bank, the address will be automatically incremented up to the most significant WordAdr described in Chaper 4.2, and the address will not roll over after that. In this case, the DO output will be "0" until when XCS is raised.

In the following cases, the memory data will not be read out and DO output will be "0".

1) LSI is in Killed state

2) The specified address is protected by Password

3) MemBank is specified with RESERVED bank

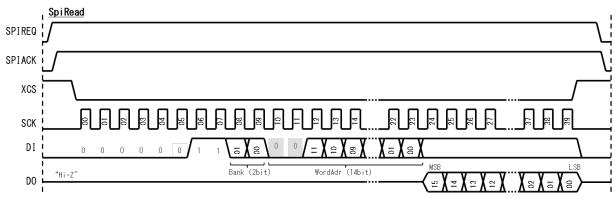



Figure 5.2.1 – SpiRead command sequence

When AccessPassword is set, the data cannot be read and the output will be "0". Therefore AccessPassword shall be cleared before SPI slave communication. If the specified area includes the WordAdr protected by Area Password, only unprotected address will be read and "0" will be output instead from protected address.

#### ■ 5.2.2 SpiWrite

SpiWrite command is to write data into memory in units of 16 bits (1 word). The address shall be specified as 2bits of MemBank followed by 14bits WordAdr (Total 16bits). The command sequence is described in Figure 5.2.2. Through DI pin, the following data shall be input synchronously to the rising edge of SCK after XCS is fallen.

SpiWrite operate-code (8bit:02h) MemBank (2bit) WordAdr (14bit)

Written data (N\*16bit)

USER bank is writable bank, and the other banks are not writable. The upper 2 bit of WordAdr shall be fixed to "00".

The command keeps on writing with automatically incremented address by continuous 16 cycles of clock to SCK and 16bits of writing data together before XCS rising. If XCS is raised on the timing before completing 16cycles of clock, the writing data will not be written into memory. If WordAdr is specified as 000h to 7FFh of USER bank and the incremented address reaches to WordAdr=7FFh, the address will roll over to WordAdr=000h and write operation is continued. If WordAdr is specified as 800h to EFFh of USER bank and the incremented address will not roll over to WordAdr=000h nor WordAdr=800h. In this case, writing operation completes at WordAdr =EFFh.

In the following cases, the writing data cannot be written, and error information will be stored into SPI error information. (refer to Chapter 5.3.1 for detail).

1) LSI is in Killed state

- 2) The specified address is protected by Password
- 3) The specified MemBank is not USER bank
- 4) WordAdr is over EFFh

5) The specified address is in the locked area



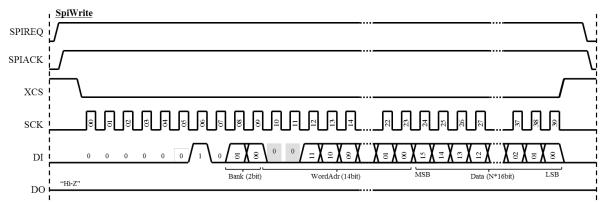



Figure 5.2.2 - SpiWrite command sequence

When AccessPassword is set, the data cannot be written. Therefore AccessPassword shall be cleared before SPI slave communication. If the specified area includes the WordAdr protected by Area Password, only unprotected address will be written and nothing will happen on protected address. If the specified area includes the WordAdr locked by Lock command or BlockPermalock command, only writable address will be written and nothing will happen on locked address for writing.

#### ■ 5.2.3 SpiRDSR

The SpiRDSR command is to read 16 bits of error information on SPI slave communication (refer to Chapter 5.3.1). The command sequence is described in Figure 5.2.3.

Through DI pin, the following data shall be input synchronously to the rising edge of SCK after XCS is fallen. SpiRDSR operate-code (8bit:05h)

In response to the command input, the 16 bits of error information will be output from DO synchronously to the falling edge of SCK. And SpiRDSR command will be completed when XCS is raised. If XCS is raised before the command completes 16 cycles of clock to SCK, the command will be terminated and the output from DO will be "Hi-Z". During the period of output from DO, any input from DI will be ignored. If XCS keeps "L" level after the command complete reading, the output from DO will be "L" level.

The error information will be cleared after SpiRDSR command is completed.

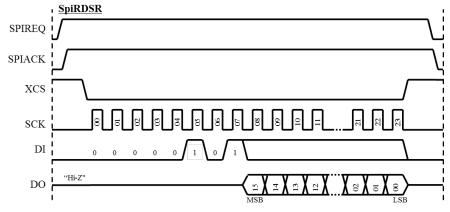



Figure 5.2.3 - SpiRDSR command sequence

## ■ 5.3 Error handling to SPI slave communication

On SPI slave communication, an error occurs under the following condition. If an error occurs in SPIRead command operation, the output from DO will be "0" and error information will be stored in error information register.

• Specified memory are is locked.

Killed status

The data stored in error information register can be read by SpiRDSR command.

#### ■ 5.3.1 Error information register (SPI slave communication)

Error information during SPI slave communication will be stored in the error information as shown in Table 5.3.1. These information can be read by SpiRDSR command.

The information will be cleared after the following operation.

- SpiRDSR command execution
- Power is off

Writing operation to error information register is ignored.

| Bit | Description                        |
|-----|------------------------------------|
| 15  | 0 (Fixed)                          |
| 14  | 0 (Fixed)                          |
| 13  | 0 (Fixed)                          |
| 12  | 0 (Fixed)                          |
| 11  | 0 (Fixed)                          |
| 10  | 0 (Fixed)                          |
| 9   | 0 (Fixed)                          |
| 8   | 0 (Fixed)                          |
| 7   | 0 (Fixed)                          |
| 6   | 0 (Fixed)                          |
| 5   | 0 (Fixed)                          |
| 4   | 0 (Fixed)                          |
| 3   | 0 (Fixed)                          |
| 2   | 0 (Fixed)                          |
| 1   | 0: Normal                          |
|     | 1: Specified address partly locked |
| 0   | 0: Normal                          |
|     | 1:Killed status                    |

Table 5.3.1 Error information register format



## ■ 6 Data protection

#### ■ 6.1 LOCK Command, BlockPermalock Command, and Data protection area

This chapter describes the access control (hereinafter referred to as "Data protection") for writing and reading memory. LOCK command can protect data in units of Bank except RESERVED Bank. And Kill Password and Access Password stored in RESERVED bank is protected. Area Password (refer to Chapter 6.2) stored in WordPtr=20h to 2Fh (WordAdr=20h to 2Fh) of RESERVED bank are also protected by the same payload [7:6] of Lock command as Access Password protection.

| MemBank     | LOCK         | WordPtr      | BlockPermalock | Remarks         |
|-------------|--------------|--------------|----------------|-----------------|
| 00:RESERVED | payload[9:8] | 00h to 01h   | _              | Kill Password   |
|             | payload[7:6] | 02h to 03h   | _              | Access Password |
|             |              | 20h to 2Fh   | _              | Area Password   |
| 01:EPC      | payload[5:4] | all          | —              |                 |
| 10:TID      | payload[3:2] | all          | —              |                 |
| 11:USER     | payload[1:0] | 000h to 1FFh | Mask[15]       | Area0           |
|             |              | 200h to 3FFh | Mask[14]       | Area1           |
|             |              | 400h to 5FFh | Mask[13]       | Area2           |
|             |              | 600h to 7FFh | Mask[12]       | Area3           |
|             |              | 800h to 9FFh | Mask[11]       | Area4           |
|             |              | A00h to BFFh | Mask[10]       | Area5           |
|             |              | C00h to DFFh | Mask[9]        | Area6           |
|             |              | E00h to EFFh | Mask[8]        | Area7           |

Table 6.1.1 Memory bank and Lock/BlockPermalock

Please refer to EPCglobal C1G2 Ver.1.2.0 6.3.2.11.3.9) for the behavior to the combination of Lock command and BlockPermalock command.



## ■ 6.2 Data Protection for USER bank

USER bank is divided by 8 areas and each area can control to be accessed by Password Authentication.

#### 6.2.1 Area Password setting

Area Password can be set to the WordPtr=20h to 2Fh (WordAdr=20h to 2Fh) of RESERVED bank (refer to Table 4.2.5) by Write command as described in Table 6.2.1. This command is executed only in Secured state.

|                   | Command   | MemBank     | WordPtr                                     | Data                            | RN     | CRC    |
|-------------------|-----------|-------------|---------------------------------------------|---------------------------------|--------|--------|
| Number of<br>bits | 8         | 2           | EBV                                         | 16                              | 16     | 16     |
| Description       | 1100 0011 | 00:RESERVED | Starting<br>Address<br>Pointer<br>(20h-2Fh) | RN16 ×<br>Password<br>to be set | handle | CRC-16 |

Table 6.2.1 Write command (Area Password setting)

#### ■ 6.2.2 Area Password Authentication

Area Password authentication can be set to the WordPtr=30h to 3Fh (WordAdr=30h to 3Fh) of RESERVED bank (refer to Table 4.2.5) by Write command as described in Table 6.2.2. 16bits of Password data will be sent twice for authentication as well as Access command. This command is executed only in Secured state.

|                | Command   | MemBank     | WordPtr                                     | Data | RN     | CRC    |
|----------------|-----------|-------------|---------------------------------------------|------|--------|--------|
| Number of bits | 8         | 2           | EBV                                         | 16   | 16     | 16     |
| Description    | 1100 0011 | 00:RESERVED | Starting<br>Address<br>Pointer<br>(30h-3Fh) | RN16 | handle | CRC-16 |

Table 6.2.2 Write command (Area Password authentication)

When the authentication is failed, LSI will not reply, which is the same as failure case in the authentication of Access command. When the authentication is succeeded, the state of LSI will be transferred into AreaSecured state, and the area becomes be readable and writeable.

If the Password is set to 0, the state returns to Secured state regardless whether it was AreaSecured state or not. Because the authentication shall be applied to area by area, it is necessary to execute additional Area Password Authentication to the target area under Secured state.



## ■ 7 Extended Application

## 7.1 SPI master

## ■ 7.1.1 SPI master setting

SPI master mode is enabled by Write command to WordPtr=9E02h(WordAdr=F02h) of USER bank. It is necessary to enable setting every power on cycle. The setting value can be read by Read command, but the value will be reset to "0000h" under the following condition.

- $\cdot \;\; \text{Power off after setting} \;\;$
- · Internal reset by low power detection

In these cases, it is necessary to set the value again by Write command in order to enable SPI master mode. The data format of SPI master setting register is shown in Table7.1.1.

| MSE                                         | 3  |    |    |      |       |   |   |     |     |   |   |   |   |   | LSB |
|---------------------------------------------|----|----|----|------|-------|---|---|-----|-----|---|---|---|---|---|-----|
| 15                                          | 14 | 13 | 12 | 11   | 10    | 9 | 8 | 7   | 6   | 5 | 4 | 3 | 2 | 1 | 0   |
| En Mux Rst Re-<br>Dio Ctl served SetupStart |    |    |    | Rese | erved |   |   | Div | Clk |   |   |   |   |   |     |

En: Master operation Enable/Disable setting

| b | it | Initial value | Setting | Setting description          |
|---|----|---------------|---------|------------------------------|
| 1 | 5  | 0             | 0       | SPI master operation Disable |
|   |    |               | 1       | SPI master operation Enable  |

#### MuxDio: Multiplex setting for DI and DO (refer to Chapter 7.1.2)

| bit | Initial value | Setting | Setting description     |
|-----|---------------|---------|-------------------------|
| 14  | 0             | 0       | Separate for DI and DO  |
|     |               | 1       | Multiplex for DI and DO |

RstCtl: XRST control

| bit | Initial value | Setting | Setting description      |
|-----|---------------|---------|--------------------------|
| 13  | 0             | 0       | XRST is "L" level output |
|     |               | 1       | XRST is "H" level output |

Reserved

| bit | Initial value | Setting | Setting description |
|-----|---------------|---------|---------------------|
| 12  | 0             | 0       | Set to 0            |

SetupStart[3:0]: setting number of clock cycles between command receiving and XCS dropping

| bit  | Initial value | Setting | Setting description         |
|------|---------------|---------|-----------------------------|
| 11:8 | 0h            | Ν       | Setup=N*8 clock (N=1 to 15) |

Clock Frequency above is SCK output frequency described in DivClk.

Reserved

| bit | Initial value | Setting | Setting description |
|-----|---------------|---------|---------------------|
| 7:4 | 0h            | 0h      | Set to 0            |



| L J |               |         |                      |                                                     |  |  |  |  |  |
|-----|---------------|---------|----------------------|-----------------------------------------------------|--|--|--|--|--|
| bit | Initial value | Setting | SCK output frequency | Setting description                                 |  |  |  |  |  |
| 3:0 | 0h            | М       | 0.5MHz/(M+1)         | DR=1(64/3)                                          |  |  |  |  |  |
|     |               |         | 0.5MHZ/(M+1)         | DR=0(8), TRcal<62.5us                               |  |  |  |  |  |
|     |               |         | 0.5MHz/(M+1)/2       | DR=0(8), 62.5us <trcal<100us< td=""></trcal<100us<> |  |  |  |  |  |
|     |               |         | 0.5MHz/(M+1)/4       | DR=0(8), 100us <trcal<150us< td=""></trcal<150us<>  |  |  |  |  |  |
|     |               |         | 0.5MHz/(M+1)/8       | DR=0(8), 150us <trcal<200us< td=""></trcal<200us<>  |  |  |  |  |  |

DivClk[3:0] Clock division setting (SCK output frequency)

4 bits of DivClk setting "M" is one of the parameters to determine SCK output frequency. When the DR value specified by Query command is 1(64/3), SCK output frequency will be "0.5MHz divided by (M+1)". When the DR value specified by Query command is 0(8), SCK output frequency will be calculated as shown in the table above depending on the TRCal value on Preamble.

#### ■ 7.1.2 SPI master command

SPI master operation can be executed by BlockWrite command, when the command specifies WordPtr=9E20h (WordAdr=F20h) or WordPtr=9E30h (WordAdr=F30h) of USER bank. In this case, the data or the command contained in Data bits of BlockWrite command will be output through SPI interface, and the response data will be stored in the specified WordAdr of USER bank. The Block Write command format is shown in Table 7.1.2.

|                | 5         |         |                                |                                                |                                      |        |        |  |  |  |  |
|----------------|-----------|---------|--------------------------------|------------------------------------------------|--------------------------------------|--------|--------|--|--|--|--|
|                | Command   | MemBank | WordPtr                        | WordCount                                      | Data                                 | RN     | CRC    |  |  |  |  |
| Number of bits | 8         | 2       | 16(EBV)                        | 8                                              | WordCount *16                        | 16     | 16     |  |  |  |  |
| Description    | 1100 0111 | 11:USER | Starting<br>Address<br>Pointer | Number<br>of Words<br>to write<br>(01h to 10h) | refer to 7.1.2.1<br>refer to 7.1.2.2 | handle | CRC-16 |  |  |  |  |

Table 7.1.2 - SPI master control by BlockWrite command

## ■ 7.1.2.1 Bridge through RF communication

If BlockWrite commod specifies WordPtr=9E20h (WordAdr=F20h) of USER bank, specified data or command can be output through SPI interface and the response data from the connected external SPI slave device will be stored in WordPtr=9E31h to 9E3Fh (WordAdr=F31h to F3Fh) of USER bank. The response data shall be read by Read command to WordPtr=9E31h to 9E3Fh (WordAdr=F31h to F3Fh).

The data or command contained in Data buts of BlockWrite command shall be stored into WordPtr=9E20h to 9E2Fh (WordAdr=F20h to F2Fh) of USER bank and the maximum length of data is 16 words. More detail is upon individual request.

## ■ 7.1.2.2 SPI master operation with memory data

If BlockWrite commnd specifies WordPtr=9E30h (WordAdr=F30h) of USER bank, the data stored in the specified area of USER bank can be output through SPI interface and the response data from the connected slave device will be stored in the same area of USER bank. More detail is upon individual request.

DS411-00007-3v0-E



## ■ 7.1.3 Control for XRST and CD

## ■ 7.1.3.1 Control for XRST

XRST outputs the value specified in bit13 of SPI master setting (refer to 7.1.1). The output from XRST is "L" level during the period from power supply until SPI master setting.

Bit13 controls XRST output level regardless of SPI master setting (bit15). As shown in Figure 7.1.3, it is used as reset signal to the external SPI slave device by "L" level output.

## ■ 7.1.3.2 Control for CD

CD outputs the data specified in CdData of SPI master command (refer to 7.1.2). The output from CD is "L" level during the period from power supply until the output of SPI master command. The output level is controlled regardless of SPI master setting (bit15).

Figure 7.1.3 shows an example timing chart of XRST and CD based on the connection of Figure 3.4.1.1.

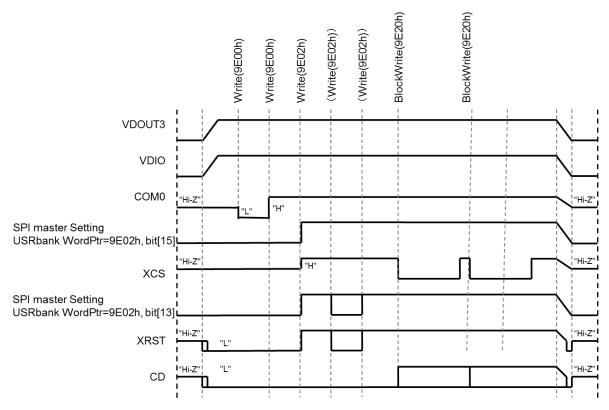



Figure 7.1.3 Control example of SPI Master communication using XRST and CD.

VDOUT3 is generated from RF and outputs to VDIO as IO power source. After SPI Master function is enabled by bit15 of SPI Master setting (refer to 7.1.1), XCS will be "H" level to output voltage to external SPI slave device through COM0.

XRST, which is controlled by bit13, outputs "L" level reset signal with a toggle to the slave device. CD, which is controlled by bit15, holds "H" level even after SPI master communication is finished.



## ■ 7.1.4 DI and DO Control (MuxDio)

#### ■ 7.1.4.1 Separate DI and DO

Figure 7.1.4.1 shows the SPI master sequence with separate DI and DO, when bit14 of WordPtr=9E02h (WordAdr=F02h) of USER bank is set to "0". During the SPI master operation, the output from DO is always "L" level or "H" level. The input to DI starts from the specified byte position.

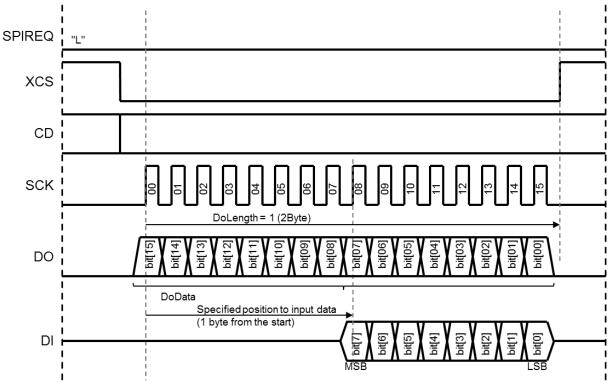



Figure 7.1.4.1 –Separate DI and DO (MuxDio=0)



## ■ 7.1.4.2 Multiplex DI and DO

Figure 7.1.4.2.1 and Figure 7.1.4.2.2 show examples of SPI master sequence with multiplex DI and DO, when bit14 of WordPtr=9E02h (WordAdr=F02h) of USER bank is set to "1". In this condition, DI and DO is assumed to share common bus (DI/DO bus). During the period of the output from DO, the external SPI slave device shall stay DI/DO bus "Hi-Z". The input to DI starts from the specified byte position and receive data until XCS will be raised. The other period is invalid.

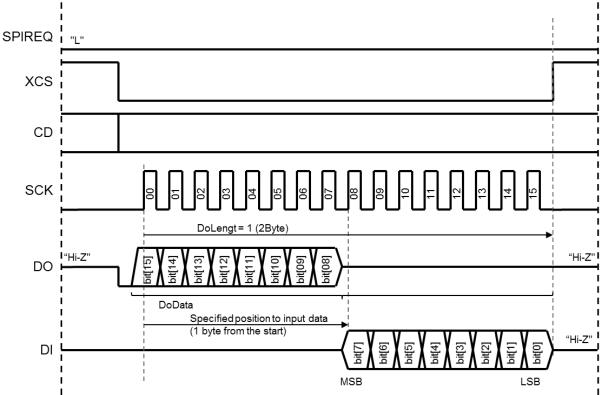



Figure 7.1.4.2.1 - Multiplex DI and DO (MuxDio=1)

# MB97R8110

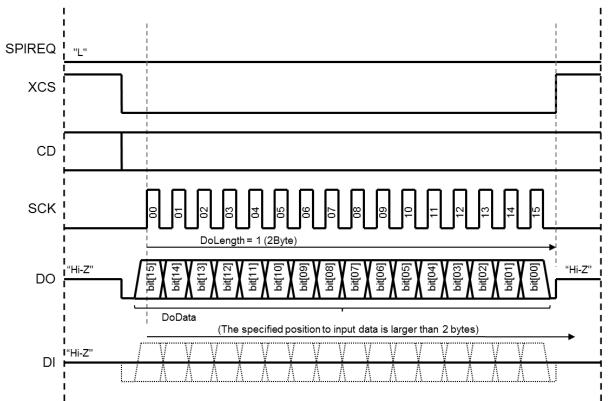



Figure 7.1.4.2.2 – Multiplex DI and DO /No data reception (MuxDio=1)

# 7.2 GPIO

### ■ 7.2.1 GPIO Setting by Write operation

GPIO function is enabled by Write command to WordPtr=9E00h (WordAdr=F00h) of USER bank in order to control the status of COM[2:0] and INT. The setting value can be read by Read command, but the value will be reset to "0000h" under the following condition.

· Power off after setting

· Internal reset by low power detection

In these cases, it is necessary to set the value again by Write command in order to enable GPIO function. The data format of GPIO setting is shown in Table7.2.1.

Table 7.2.1 GPIO control register format

| MSE | В                    | -  |    |    |    |      |      |   |       | -     |      | -   |   |   | L | _SB |
|-----|----------------------|----|----|----|----|------|------|---|-------|-------|------|-----|---|---|---|-----|
| 1   | 5                    | 14 | 13 | 12 | 11 | 10   | 9    | 8 | 7     | 6     | 5    | 4   | 3 | 2 | 1 | 0   |
|     | FuncEn[3:0] Reserved |    |    |    | Se | tEn[ | 3:0] | I | ntDat | ComDa | at[2 | :0] |   |   |   |     |

#### FuncEn[3] : INT data input control

| bit | Initial<br>value | Setting value | Description                                    |
|-----|------------------|---------------|------------------------------------------------|
| 15  | 0                | 0             | INT Input is rejected.                         |
|     |                  | 1             | INT input is enabled and readable from IntDat. |

Note. FuncEn[3] is updated only when SetEn[3] is 1. If not, FuncEn[3] cannot be updated.

| bit | Initial<br>value | Setting value | Description                           |
|-----|------------------|---------------|---------------------------------------|
| 14  | 0                | 0             | COM2 stays "Hi-Z" level.              |
|     |                  | 1             | COM2 outputs ComDat[2] setting value. |
| 13  | 0                | 0             | COM1 stays "Hi-Z" level.              |
|     |                  | 1             | COM1 outputs ComDat[1] setting value. |
| 12  | 0                | 0             | COM0 stays "Hi-Z" level.              |
|     |                  | 1             | COM0 outputs ComDat[0] setting value. |

#### FuncEn[2:0] : COM2-0 output control of ComDat[2:0] setting value

Note. FuncEn[2:0] is updated only when the corresponded bit of SetEn[2:0] is 1. If not, FuncEn[2:0] cannot be updated

#### Reserved

| bit  | Initial<br>value | Setting value | Description |
|------|------------------|---------------|-------------|
| 11:8 | 0h               | 0h            | Set to 0.   |

#### SetEn[3:0] : Update control for FuncEn[3:0] and {IntDat,ComDat[2:0]}

| bit | Initial<br>value | Setting value | Description                                |
|-----|------------------|---------------|--------------------------------------------|
| 7   | 0                | 0             | Neither Func[3] nor IntDat are updated.    |
|     |                  |               | The value before setting is not updated.   |
|     |                  | 1             | Both Func[3] and IntDat are updated.       |
| 6   | 0                | 0             | Neither Func[2] nor ComDat[2] are updated. |
|     |                  |               | The value before setting is not updated.   |
|     |                  | 1             | Both Func[2] and ComDat[2] are updated.    |
| 5   | 0                | 0             | Neither Func[1] nor ComDat[1] are updated. |
|     |                  |               | The value before setting is not updated.   |
|     |                  | 1             | Both Func[1] and ComDat[1] are updated.    |
| 4   | 0                | 0             | Neither Func[0] nor ComDat[0] are updated. |
|     |                  |               | The value before setting is not updated.   |
|     |                  | 1             | Both Func[0] and ComDat[0] are updated.    |

Note. SetEn[3:0] manages to update the status of FuncEn[3:0] and  $\{IntDat,ComDat[2:0]\}$ , or not. Regardless of the setting value, 0h will be responded to Read command.

#### IntDat : INT input data

| bit | Initial<br>value | FuncEn[3] | Setting | Description                                           |
|-----|------------------|-----------|---------|-------------------------------------------------------|
| 3   | 0                | 0         | 0       | Return "0" to Read command.                           |
|     |                  |           | 1       | Return "1" to Read command.                           |
|     |                  | 1         | -       | Input value from INT pin is returned to Read command. |
|     |                  |           |         | Written value is invalid.                             |

Note. IntDat is updated only when SetEn[3] is 1



| bit | Initial<br>value | FuncEn[*] | Setting | Description                                        |
|-----|------------------|-----------|---------|----------------------------------------------------|
| 2   | 0 0              |           | -       | Written value is invalid and COM2 is not affected. |
|     |                  |           |         | Return "0" to Read command.                        |
|     |                  | 1         | 0       | "L" level output to COM2.                          |
|     |                  |           | 1       | "H" level output to COM2.                          |
| 1   | 0                | 0         | -       | Written value is invalid and COM1 is not affected. |
|     |                  |           |         | Return "0" to Read command.                        |
|     |                  | 1         | 0       | "L" level output to COM1.                          |
|     |                  |           | 1       | "H" level output to COM1.                          |
| 0   | 0                | 0         | -       | Written value is invalid and COM0 is not affected. |
|     |                  |           |         | Return "0" to Read command.                        |
|     |                  | 1         | 0       | "L" level output to COM0.                          |
|     |                  |           | 1       | "H" level output to COM0.                          |

ComDat [2:0] : Output data control to COM2-0

Note. ComDat[2:0] will be updated only when the corresponded SetEn bit is 1. The number(\*) of FuncEn[\*] indicates the corresponded bit number to ComDat[2:0] respectively

# ■ 7.2.2 Reading GPIO setting

The GPIO status information (Table 7.2.1) can be read by Read command to WordPtr=9E00h (WordAdr=F00h).

| bit | Initial<br>value | Read<br>value | Description                       |
|-----|------------------|---------------|-----------------------------------|
| 15  | 0                | 0             | INT Input is rejected.            |
|     |                  | 1             | INT input is readable from InDat. |

FuncEn[3] : IINT data input control

| FuncEn[2:0] : Com[2:0] output control | of ComDat[2:0] setting value |
|---------------------------------------|------------------------------|
|---------------------------------------|------------------------------|

| bit | Initial<br>value | Read<br>value | Description                                |
|-----|------------------|---------------|--------------------------------------------|
| 14  | 0                | 0             | COM2 is "Hi-Z" level.                      |
|     |                  | 1             | ComDat[2] setting value is output to COM2. |
| 13  | 0                | 0             | COM1 is "Hi-Z" level.                      |
|     |                  | 1             | ComDat[1] setting value is output to COM1. |
| 12  | 0                | 0             | COM0 is "Hi-Z" level.                      |
|     |                  | 1             | ComDat[0] setting value is output to COM0. |

# MB97R8110

### Reserved

| bit  | Read<br>value | Description                      |
|------|---------------|----------------------------------|
| 11:8 | 0h            | Reserved bits always return "0". |

SetEn[2:0] : Update control for FuncEn[3:0] and {IntDat,ComDat[2:0]} FuncEn[3:0]

| bit | Read<br>value | Description                                                      |
|-----|---------------|------------------------------------------------------------------|
| 7:4 | 0h            | Regardless of the written value, read value is always "0".       |
|     |               | The Written value is for updating FncEn[3:0],IntDat,ComDat[2:0], |
|     |               | which do not affect to read value.                               |

### IntDat :

| bit | Initial<br>value | FuncEn[3] | Description                                                       |
|-----|------------------|-----------|-------------------------------------------------------------------|
| 3   | 0                | 0         | The written value for setting is returned as read value.          |
|     |                  |           | It is possible to apply for test use such as branch test with INT |
|     |                  |           | value when INT is not connected to external devices.              |
|     |                  | 1         | Input value from INT is returned to Read command.                 |

### ComDat [2:0] : Output data control to COM2-0

| bit | Initial<br>value | FuncEn[*] | Read<br>value | Description                                                |  |  |  |
|-----|------------------|-----------|---------------|------------------------------------------------------------|--|--|--|
| 2   | 0                | 0         | 0             | COM2 is "Hi-Z" level.                                      |  |  |  |
|     |                  |           |               | Regardless of the written value, read value is always "0". |  |  |  |
|     |                  | 1         | 0             | "L" level output to COM2.                                  |  |  |  |
|     |                  |           | 1             | "H" level output to COM2.                                  |  |  |  |
| 1   | 0                | 0         | 0             | COM1 is "Hi-Z" level.                                      |  |  |  |
|     |                  |           |               | Regardless of the written value, read value is always "0". |  |  |  |
|     |                  | 1         | 0             | "L" level output to COM1.                                  |  |  |  |
|     |                  |           | 1             | "H" level output to COM1.                                  |  |  |  |
| 0   | 0                | 0         | 0             | COM0 is "Hi-Z" level.                                      |  |  |  |
|     |                  |           |               | Regardless of the written value, read value is always "0". |  |  |  |
|     |                  | 1         | 0             | "L" level output to COM0.                                  |  |  |  |
|     |                  |           | 1             | "H" level output to COM0.                                  |  |  |  |

\*: The number(\*) of FuncEn[\*] indicates the corresponded bit number to ComDat[2:0] respectively

# ■ 7.2.3 GPIO Truth Table

### ■ 7.2.3.1 INT control

Truth table of INT control is shown in Table 7.2.3.1.

| Table 7.2.       |        | Truth Ta | able      |        |        |        |                            |                 |                         |                                                                           |
|------------------|--------|----------|-----------|--------|--------|--------|----------------------------|-----------------|-------------------------|---------------------------------------------------------------------------|
| Status I<br>Sett |        | W        | ritten Da | ta     |        | Statu  | s after S                  | Setting         |                         |                                                                           |
| FuncEn           | IntDat | SetEn    | FuncEn    | IntDat | INT IO | FuncEn | IntDat<br>Setting<br>value | IO<br>Control   | IntDat<br>Read<br>value | Description                                                               |
| 0                | 0      | 0        | -         | -      | -      | 0      | 0*                         | Input<br>Reject | 0                       | The status is not<br>changed by setting, and<br>IntDat read value is "0". |
| 0                | 1      | 0        | -         | -      | -      | 0      | 1*                         | Input<br>Reject | 1                       | The status is not<br>changed by setting, and<br>IntDat read value is "1". |
| 1                | -      | 0        | -         | -      | 0*     | 1      | -                          | Input<br>Valid  | 0                       | The status is not<br>changed by setting, and<br>INT IO value "0" is read. |
| 1                | -      | 0        | -         | -      | 1*     | 1      | -                          | Input<br>Valid  | 1                       | The status is not<br>changed by setting, and<br>INT IO value "1" is read. |
| -                | -      | 1        | 0         | 0      | -      | 0      | 0*                         | Input<br>Reject | 0                       | The statu is updated<br>and IndDat value "0" is<br>read.                  |
| -                | -      | 1        | 0         | 1      | -      | 0      | 1*                         | Input<br>Reject | 1                       | The status is updated<br>and IndDat value "1" is<br>read.                 |
| -                | -      | 1        | 1         | -      | 0*     | 1      | -                          | Input<br>Valid  | 0                       | The Status is updated<br>and INT IO value "0" is<br>read.                 |
| -                | -      | 1        | 1         | -      | 1*     | 1      | -                          | Input<br>Valid  | 1                       | The Status is updated<br>and INT IO value "1" is<br>read.                 |

Table 7.2.3.1 INT Truth Table

- Any data dose not affect status update or read value.

\* INT IO data is readable on FuncEn=1.

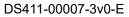
Status is not updated on SenEn=0.

Status is updated on SenEn=1.

# ■ 7.2.3.2 COM[2:0] control

Truth table of COM[2:0] control is shown in Table 7.2.3.2.

### Table 7.2.3.2 COM[2:0] Truth Table


| Status bef | ore Setting | V     | Vritten Da | ita    | Stat   | ComDat |           |            |
|------------|-------------|-------|------------|--------|--------|--------|-----------|------------|
| FuncEn     | ComDat      | SetEn | FuncEn     | ComDat | FuncEn | ComDat | IO output | Read value |
| 0          | -           | 0     | -          | -      | 0      | -      | Hi-Z      | 0          |
| 1          | 0           | 0     | -          |        | 1      | 0      | 0         | 0          |
| 1          | 1           | 0     | -          | -      | 1      | 1      | 1         | 1          |
| -          | -           | 1     | 0          | -      | 0      | -      | Hi-Z      | 0          |
| -          | -           | 1     | 1          | 0      | 1      | 0      | 0         | 0          |
| -          | -           | 1     | 1          | 1      | 1      | 1      | 1         | 1          |

\_

Any data does not affect status update or read value.

Status is not updated on SenEn=0.

Status is updated on SenEn=1.



# 7.3 Key Matrix scan

### ■ 7.3.1 Key Matrix scan setting

Key Matrix scan function is enabled by Write command to WordPtr=9E01h(WordAdr=F01h) of USER bank. It is necessary to enable setting every power on cycle. The setting value can be read by Read command, but the value will be reset to "0000h" under the following condition.

- Key Matrix scan Disable (bit15="0")
- · Power off after setting
- · Internal reset by low power detection

In these cases, it is necessary to set the value again by Write command in order to enable Key Matrix scan function. The data format of Key Matrix scan setting register is shown in Table7.3.1.

| Table 7.3.1 – Data | format of Ke | y Matrix scan setting |
|--------------------|--------------|-----------------------|
|                    |              |                       |

| MSB |    |           |    |    |        |   |   |   |       |       |   |   | - Y   |     | LSB |
|-----|----|-----------|----|----|--------|---|---|---|-------|-------|---|---|-------|-----|-----|
| 15  | 14 | 13        | 12 | 11 | 10     | 9 | 8 | 7 | 6     | 5     | 4 | 3 | 2     | 1   | 0   |
| En  | -  | me<br>ple |    | Re | eserve | d |   |   | LastC | olumn |   |   | Reser | ved |     |

#### En: Key Matrix scan operation Enable/Disable

| bit | Initial value | Setting value | Setting description               |  |  |  |
|-----|---------------|---------------|-----------------------------------|--|--|--|
| 15  | 0h            | 0             | Key Matrix scan operation Disable |  |  |  |
|     |               | 1             | Key Matrix scan operation Enable  |  |  |  |

TimeSample : Activate time for Column 1 (Reference value for enough power supply)

| bit   | Initial value | Setting value | Setting description |
|-------|---------------|---------------|---------------------|
| 14:13 | 0h            | 0h            | 256us               |
|       |               | 1h            | 512us               |
|       |               | 2h            | 64us                |
|       |               | 3h            | 128us               |

Reserved

| bit  | Initial value | Setting value | Setting description |
|------|---------------|---------------|---------------------|
| 12:8 | 0h            | 0h            | Set to 0            |

LastColumn

| bit       | Initial value                                          | Setting value | Setting description                         |  |  |  |  |  |  |
|-----------|--------------------------------------------------------|---------------|---------------------------------------------|--|--|--|--|--|--|
| 7:4       | 0h                                                     | 3h* to Fh     | Specify "the connected Number of Column -1" |  |  |  |  |  |  |
| * When th | * When the number of column is loss than 4 set to "2b" |               |                                             |  |  |  |  |  |  |

. When the number of column is less than 4, set to "3h".

#### Reserved

| bit | Initial value | Setting value | Setting description |
|-----|---------------|---------------|---------------------|
| 3:0 | 0h            | 0h            | Set to 0            |

### ■ 7.3.2 Block Erase Command for Key Matrix scan

Key Matrix scan function is executed by BlockErase command to WordPtr=9E10h (WordAdr=F10h) of USER bank, and detects the key input status of the connected device as shown in Figure 3.6.1. Up to 4 columns of key information, which include pressed key, are stored in WordPtr=9E10h to 9E13h (WordAdr=F10h to F13h). The Command format is shown in Table.7.3.2.

|                   | Command   | MemBank | WordPtr                | WordCount                        | RN     | CRC    |
|-------------------|-----------|---------|------------------------|----------------------------------|--------|--------|
| Number of<br>bits | 8         | 2       | 16(EBV)                | 8                                | 16     | 16     |
| Description       | 1100 1000 | 11:USER | 1001 1110<br>0001 0000 | LastColumn+1<br>(refer to 7.3.1) | handle | CRC-16 |

Table 7.3.2 - Key Matrix scan with BlockErase command

### ■ 7.3.3 Response to Block Erase Command

The error code "8Eh" will be replied if there are no pressed Keys when Key Matrix scan command is executed by BlockErase. The normal reply will be returned if the pressed keys of 1Column to 4Column are detected. The error code "0Bh" (indicating Insufficient power) will be replied if internal voltage during Key Matrix scan operation caused is dropped down.

### ■ 7.3.4 Read Command for reading Key data

The pressed Key data will be confirmed by Read command to WordPtr= 9E10h to 9E13h (WordAdr=F10h to F13h). The Command format is shown in Table.7.3.4.

|                | Command   | MemBank | WordPtr                | WordCount                           | RN     | CRC    |
|----------------|-----------|---------|------------------------|-------------------------------------|--------|--------|
| Number of bits | 8         | 2       | 16 (EBV)               | 8                                   | 16     | 16     |
| Description    | 1100 0010 | 11:USER | 1001 1110<br>0001 0000 | 04h<br>Count of key<br>data to read | handle | CRC-16 |

Table 7.3.4 - Key data confirmation with Read command

### ■ 7.3.5 Key data format

The pressed key data is stored to WordPtr=9E10h to 9E13h (WordAdr=F10h to F13h) in the format as shown in Table 7.3.5

#### Table 7.3.5 Key Matrix scan data format

| MSB |    |    |    |    |    |   |   |   |   |   |    |   |   | L | SB |
|-----|----|----|----|----|----|---|---|---|---|---|----|---|---|---|----|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4  | 3 | 2 | 1 | 0  |
|     | 0  | h  |    |    | KC |   |   |   |   |   | KR |   |   |   |    |

#### KC: Column number (KC00 to KC15) of Key Matrix

| bit  | Initial | Retrieved | Description                |
|------|---------|-----------|----------------------------|
|      | value   | value     |                            |
| 11:8 | 0h      | Ν         | KC Pin Number (N= 0 to Fh) |
|      |         |           | e.g. 0111b for KC7         |

#### KR : Raw data (KR00 to KR07) of Key Matrix

| bit | Initial | Retrieved | Description                                       |
|-----|---------|-----------|---------------------------------------------------|
|     | value   | value     |                                                   |
| 7:0 | 0h      | XXXX      | 8bits of Key information on the detected KC[11:8] |
|     |         | xxxxb     | e.g. 00110000b for the input to KR04 and KR05     |
|     |         |           | (refer to Figure 7.3.8)                           |

One command cycle updates WordPtr=9E10h to 9E13h (WordAdr=F10h to F13h), where 4 columns of data is stored. If the detected number of columns is less than 4, the same number of word will be updated and the rest will be cleared to 0000h. For example, if the detected column is only 1, the data stored in WordPtr=9E11h to 9E13h (WordAdr=F11h to F13h) will be cleared to 0000h.

### ■ 7.3.6 Key Matrix scan interface input/output

Once Key Matrix scan starts, "H" level of activation signal switches to select to the columns from KC00 to KC15. When the column is not selected, the output is "Hi-Z". When the pressed key is detected, the data outputs. Figure 7.3.6 describes an example that KR05 is pressed on KC01 Column, and it takes 4ms to scan 16 Columns.

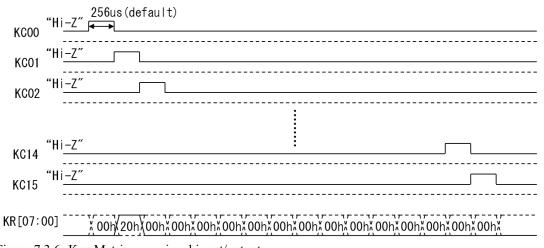



Figure 7.3.6 -Key Matrix scan signal input/output

### ■ 7.3.7 Communication flow

The communication flow among reader/writer, this LSI and Key input device is described in Figure 7.3.7 The scan operation for Key input device will be processed during T5 time (Max 20ms) of EPC starting from receipt of BlockErase command to reply

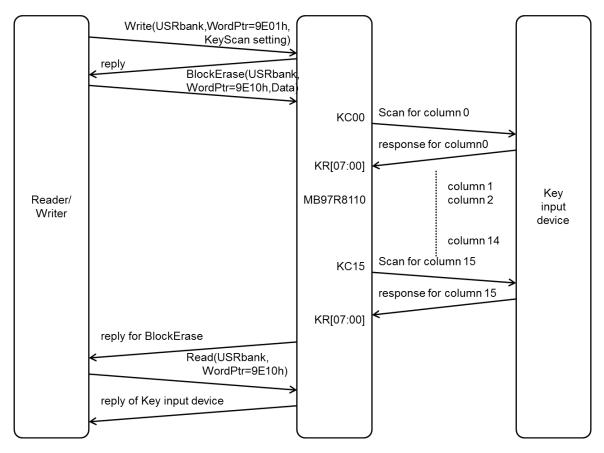



Figure 7.3.7 - Key Matrix scan operation communication flow



### ■ 7.3.8 The pressed Key number and Key Matrix scan clock operation

The number of scanned data is up to 4 columns once one BlockErase command is executed. Figure 7.3.8 describes an example of 8x16 Key Matrix scan that there are 5colums with pressed Keys. In the example, the scan column will stop at KC10 where the 4th Key data is scanned, and the data 0080h, 0102h, 0430h, 0A01h will be stored respectively into WordPtr=9E10h to 9E13h (WordAdr=F10h to F13h) of USER bank as the 1st output of scan. It is identified that KR05 and KR04 Keys are pressed simultaneously on KC04. This LSI will reply to BlockErase command normally after 4 column data is stored in the memory. Upon the next BlockErase command, the scan will start from KC11 which is the next column to KC10 the last scan of the 1st output. If the Key Matrix scan operation reaches to KC15, it backs to KC00 as 2nd round and continues scanning until detecting all 4 column data or accumulated scanning column reaches 16, and then data will be stored as the 2nd output. The example shows that the data 0F40h, 0080h, 0102h, 0430h will be stored respectively into WordAdr=F10h to F13h) of USER bank.

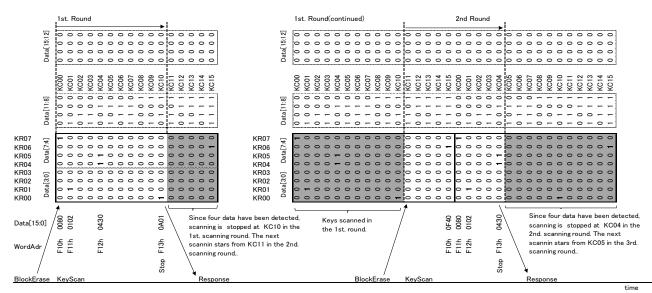



Figure 7.3.8 - Key Matrix scan operation communication flow



### 7.4 VDOUT3 Power output

### ■ 7.4.1 VDOUT3 setting

VDOUT3 is power output function, which generates RF power through PWRP3-PWPM3 and provide it for external devices. This function is enabled by Write command to WordPtr=9E03h(WordAdr=F03h) of USER bank in order to set the VDOUT3 output voltage and detection voltage. It is necessary to enable setting every power on cycle. The status of actual output voltage to the detection voltage is updated accordingly in bit1 to 2 and can be confirmed by Read command.

The data format of VDOUT3 setting by Write command is shown in Table7.4.1.

| Table      | Table 7.4.1 – Data format of VDOUT3 setting |          |     |            |     |       |     |   |   |     |       |   |   |    |      |
|------------|---------------------------------------------|----------|-----|------------|-----|-------|-----|---|---|-----|-------|---|---|----|------|
| MSB        | MSB                                         |          |     |            |     |       |     |   |   |     | LSB   |   |   |    |      |
| 15         | 14                                          | 13       | 12  | 11         | 10  | 9     | 8   | 7 | 6 | 5   | 4     | 3 | 2 | 1  | 0    |
| En<br>Det1 | Set                                         | :Vo I De | et1 | En<br>Det2 | Set | VolDe | et2 |   |   | Res | erved |   |   | Vo | IDet |

EnDet1 Voltage detection enable/disable for SetVolDet1

| bit | Initial value | Setting value | Setting description                               |  |  |  |  |  |
|-----|---------------|---------------|---------------------------------------------------|--|--|--|--|--|
| 15  | 0             | 0             | Voltage detection Disabled (SetVoDet1 is invalid) |  |  |  |  |  |
|     |               | 1             | Voltage detection Enabled (SetVoDet1 is valid)    |  |  |  |  |  |

SetVolDet1 Lower limit voltage setting for the detection

| bit   | Initial value | Setting value | Detection voltage |
|-------|---------------|---------------|-------------------|
| 14:12 | 0h            | 0h            | 3.1±0.25V         |
|       |               | 1h            | 3.0±0.25V         |
|       |               | 2h            | 2.9±0.25V         |
|       |               | 3h            | 2.8±0.25V         |
|       |               | 4h            | 2.7±0.25V         |
|       |               | 5h            | 2.6±0.25V         |
|       |               | 6h            | 2.5±0.25V         |
|       |               | 7h            | 2.4±0.25V         |

EnDet2 Voltage detection enable/disable for SetVolDet2

| bit | Initial value | Setting value | Setting description                               |  |  |  |  |
|-----|---------------|---------------|---------------------------------------------------|--|--|--|--|
| 11  | 0             | 0             | Voltage detection Disabled (SetVoDet2 is invalid) |  |  |  |  |
|     |               | 1             | Voltage detection Enabled (SetVoDet2 is valid)    |  |  |  |  |

| S | SetVolDet2 |               |               |                   |          |          |  |  |  |  |
|---|------------|---------------|---------------|-------------------|----------|----------|--|--|--|--|
|   | bit        | Initial value | Setting value | Detection voltage | Output V | Voltage* |  |  |  |  |
|   |            |               |               |                   | Тур.     | Max.     |  |  |  |  |
|   | 10:8       | 0h            | 0h            | 3.3±0.25V         | 3.4V     | 3.6V     |  |  |  |  |
|   |            |               | 1h            | 3.2±0.25V         | 3.4V     | 3.6V     |  |  |  |  |
|   |            |               | 2h            | 3.1±0.25V         | 3.3V     | 3.5V     |  |  |  |  |
|   |            |               | 3h            | 3.0±0.25V         | 3.3V     | 3.5V     |  |  |  |  |
|   |            |               | 4h            | 3.0±0.25V         | 3.2V     | 3.4V     |  |  |  |  |
|   |            |               | 5h            | 2.9±0.25V         | 3.2V     | 3.4V     |  |  |  |  |
|   |            |               | 6h            | 2.8±0.25V         | 3.1V     | 3.3V     |  |  |  |  |
|   |            |               | 7h            | 2.7±0.25V         | 3.1V     | 3.3V     |  |  |  |  |

\*.VDOUT3 output voltage setting is always valid regardless of the EnDet2 setting. When the power from reader is insufficient, VDOUT3 output voltage may not reach the expected value.

#### Reserved

| 1, | eser veu |               |               |                     |  |  |  |  |  |  |  |
|----|----------|---------------|---------------|---------------------|--|--|--|--|--|--|--|
|    | bit      | Initial value | Setting value | Setting description |  |  |  |  |  |  |  |
|    | 7:2      | 0h            | 0h            | Set to 0            |  |  |  |  |  |  |  |

#### VolDet (Read only) VDOUT3 output voltage detection

| bit | Initial value | Setting value | Setting description                      |  |
|-----|---------------|---------------|------------------------------------------|--|
| 1   | -             | 0             | VDOUT3 <setvoldet1< td=""></setvoldet1<> |  |
|     |               | 1             | VDOUT3>SetVolDet1                        |  |
| 0   | -             | 0             | VDOUT3 <setvoldet2< td=""></setvoldet2<> |  |
|     |               | 1             | VDOUT3>SetVolDet2                        |  |

• VolDet bit1,0=0 : VDOUT3 output voltage is lower than the voltage set in SetVolDet1,2

• VolDet bit1,0=1 : VDOUT3 output voltage is higher than the voltage set in SetVolDet1,2

#### ■ 7.4.2 VDOUT3 Output current on receiving power

Figure 7.4.2 shows the VDOUT3 output current with 3V power supply on different receiving power level from RF (PWRP3-PWRM3 antenna). In this figure, 600µA with 3V output requires +8dBm as receiving power from RF.

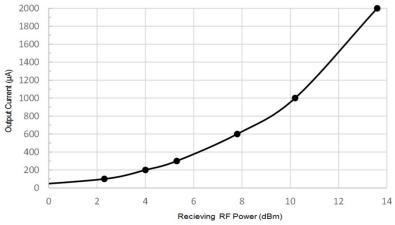



Figure 7.4.2 VDOUT3 output current with 3V power supply



# ■ 8 ELECTRICAL CHARACTERISTICS

# ■ 8.1 Absolute Maximum Rating

| Parameter                | Symbol | Value |     |         | Unit | Conditions/Remarks      |  |
|--------------------------|--------|-------|-----|---------|------|-------------------------|--|
| Farameter                | Symbol | MIN   | TYP | MAX     | Unit | Conditions/Remarks      |  |
| Maximum input<br>voltage | Vmax   | _     | -   | 4.0     | V    | PWRP1-PWRM1,PWRP3-PWRM3 |  |
| Power supply<br>voltage  | VDD    | -0.5  | Ι   | +4.0    | V    |                         |  |
| Input voltage            | VIN    | -0.5  | -   | VDD+0.5 | V    |                         |  |
| Output voltage           | VOUT   | -0.5  | _   | VDD+0.5 | V    |                         |  |
| ESD voltage<br>immunity  | VESD   | -     | -   | ±1200   | V    | Human Body Model        |  |
| Storage<br>temperature   | Tstg   | -40   | _   | +85     | °C   |                         |  |

 Table 8.1
 - Absolute Maximum Rating

# ■ 8.2 Recommended Operation Conditions

| Parameter                           | Symbol  |         | Value | )    | Unit | Conditions/Romarka                   |
|-------------------------------------|---------|---------|-------|------|------|--------------------------------------|
| Parameter                           | Symbol  | MIN     | TYP   | MAX  | Unit | Conditions/Remarks                   |
| Operating ambient temperature       | Та      | -4<br>0 | Ι     | +85  | °C   |                                      |
| Retention guaranteed<br>temperature | Trtn1   | -40     | _     | +85  | °C   | Retention guaranteed period: 10years |
| RF communication                    | 1       |         |       |      |      |                                      |
| Antenna input<br>frequency          | Fclk    | 860     | _     | 960  | MHz  |                                      |
| Receiving modulation<br>depth       | (A-B)/A | 80      | 90    | 100  | %    |                                      |
| Receiving bit rate                  | F_fwd   | 26.7    | _     | 128  | kbps | PIE code: mark rate =1/2             |
| Receiving waveform<br>rise time     | Tr      | 1       |       | 500  | μs   |                                      |
| Receiving waveform settling time    | Ts      | _       | Ι     | 1500 | μs   |                                      |
| Receiving waveform fall time        | Tf      | 1       | _     | 500  | μs   |                                      |
| SPI slave commun                    | ication |         |       |      |      |                                      |
| Power supply voltage                | VDD     | 1.8     | _     | 3.6  | V    |                                      |

 Table 8.2
 - Recommended Operation Conditions

# ■ 8.3 RF Communication Characteristics

| Parameter                               | Symbol     | Value |     | Unit | Conditions/Remarks |                                                                                           |
|-----------------------------------------|------------|-------|-----|------|--------------------|-------------------------------------------------------------------------------------------|
| Parameter                               | Symbol     | MIN   | TYP | MAX  | Unit               | Conditions/Remarks                                                                        |
| Minimum operating power<br>when reading | PR_MIN     | _     | -12 | _    | dBm                | Measured with bare die<br>Tari=25us,RTcal=2.5Tari,TRcal=3.0RTcal,<br>DR=8,FM0,BLF=43kbps, |
| Minimum operating power<br>when writing | PW_MIN     | _     | -12 | _    | dBm                | DSB-ASK, Modulation depth=90%<br>memory access length≦6Word (※1)                          |
| Maximum operating power                 | PMAX       |       | +20 |      | dBm                |                                                                                           |
| Equivalent input capacitance            | СР         | _     | 0.8 | Ι    | pF                 | 920MHz: Input power= -12dBm, parallel<br>model                                            |
| (PWRP1-PWRM1)                           | 0.         | _     | 0.8 |      | pF                 | 866MHz: Input power= -12dBm, parallel<br>model                                            |
| Equivalent input resistance             | RP         | _     | 4.1 | Ι    | KΩ                 | 920MHz: Input power= -12dBm, parallel<br>model                                            |
| (PWRP1-PWRM1)                           | κ <b>Γ</b> | _     | 4.9 | Ι    | KΩ                 | 866MHz: Input power= -12dBm, parallel model                                               |
| Equivalent input capacitance            | СР         | _     | 2.5 | _    | pF                 | 920MHz: Input power= +8dBm, parallel model                                                |
| (PWRP3-PWRM3)                           | CP         | _     | 2.3 |      | pF                 | 866MHz: Input power= +8dBm, parallel model                                                |
| Equivalent input resistance             | RP         | _     | 140 | _    | Ω                  | 920MHz: Input power= +8dBm, parallel model                                                |
| (PWRP1-PWRM1)                           |            | _     | 155 | _    | Ω                  | 866MHz: Input power= +8dBm, parallel model                                                |
| Returning bit rate                      | F_rtrn     | 40    |     | 640  | kbps               |                                                                                           |

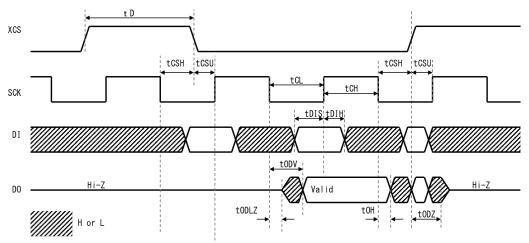
| Table 8.3 - | RF Comm | unication | Characteristic | cs |
|-------------|---------|-----------|----------------|----|
|-------------|---------|-----------|----------------|----|

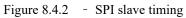
\*1 These characteristics are the values for the standalone LSI, and do not specify the values when the LSI is connected to other devices.



# ■ 8.4 SPI Slave Communication

# ■ 8.4.1 DC Characteristics


| Parameter                |        | Symbol |         | Value |         | Unit | Conditions                                                  |
|--------------------------|--------|--------|---------|-------|---------|------|-------------------------------------------------------------|
| Paran                    | leter  | Symbol | MIN     | TYP   | MAX     | Unit | Conditions                                                  |
| Input<br>leakage ci      | urrent | ILI    | _       | _     | ±5      | μA   | VIN = VDD (SPIREQ pin)                                      |
|                          |        |        | _       | _     | ±1      | μA   | VIN = 0V (SPIREQ pin)<br>VIN = 0V to VDD (the other pins※1) |
| Output<br>leakage ci     | urrent | ILO    | _       | _     | ±1      | μA   | VOUT = 0V to VDD, when output is<br>"Hi-Z" (output pin ※2)  |
|                          | ICC    | ICC    | _       | 70    | 200     | μA   | SCK = 2MHz, Vdd=3.0V                                        |
| Power<br>supply          | IPD1   | IPD1   | _       | 1     | 10      | μA   | SPIREQ = 0V or open<br>No RF reception                      |
|                          | ISB    | ISB    | _       | 20    | 40      | μA   | SPIREQ = VDD XCS=VDD                                        |
| "H" level<br>Input volt  | tage   | VIH    | VDDx0.7 | _     | VDD+0.3 | V    | *3                                                          |
| "L" level<br>Input volta | age    | VIL    | -0.3    |       | VDDx0.3 | V    | <b>※</b> 3                                                  |
| "H" level<br>Output vol  | ltage  | VOH    | VDD-0.5 |       | VDD     | V    | IOH=-2mA X2                                                 |
| "L" level<br>Output vol  | Itage  | VOL    | 0       | —     | 0.4     | V    | IOL= 2mA %2                                                 |
| SPI pin pu<br>resistance |        | RIN    | 0.8     | 1     | 1.2     | MΩ   | VIN = VDD<br>SPIREQ Pin                                     |


\*1 : XCS、SCK、DI Pin \*2 : DO、SPIACK Pin \*3 : SPIREQ、XCS、SCK、DI Pin

### ■ 8.4.2 AC Characteristics

Table 8.4.2 - AC Characteristics

| Parameter              | Symbol           |     | Value |     | llmit | Pin           |  |
|------------------------|------------------|-----|-------|-----|-------|---------------|--|
| i arameter             | Symbol           | MIN | TYP   | MAX | Unit  | PIII          |  |
| SCK clock frequency    | fск              | —   | —     | 2   | MHz   | SCK           |  |
| Clock high time        | tсн              | 200 | —     | —   | ns    | SCK           |  |
| Clock low time         | tc∟              | 200 | —     | _   | ns    | SCK           |  |
| Chip select set time   | tcsu             | 60  | —     | —   | ns    | XCS,SCK       |  |
| Chip select hold time  | tсsн             | 20  | —     | —   | ns    | XCS,SCK       |  |
| Output enable time     | todlz            | 20  |       |     | ns    | DO,SCK        |  |
| Output disable time    | t <sub>ODz</sub> | —   | —     | 60  | ns    | DO,SCK        |  |
| Output data valid time | todv             | _   | —     | 80  | ns    | DO,XCS        |  |
| Output hold time       | t <sub>он</sub>  | 0   | —     | —   | ns    | DO,SCK        |  |
| Deselect time          | tD               | 280 | —     | _   | ns    | XCS           |  |
| Data rise time         | t <sub>R</sub>   | —   | —     | 5   | ns    | DI,XCS,SPIREQ |  |
| Data fall time         | t <sub>F</sub>   | _   | _     | 5   | ns    | DI,XCS,SPIREQ |  |
| Data set up time       | t <sub>DIS</sub> | 20  | _     | _   | ns    | DI,SCK        |  |
| Data hold time         | T <sub>DIH</sub> | 20  | _     | _   | ns    | DI,SCK        |  |





### ■ 8.4.3 Power sequence (SPI Master function is not used)

In SPI slave communication mode, the power sequence when SPI master function is not used is shown in Figure 8.4.3.1 (with VDD off control), and Figure 8.4.3.2 (without VDD off control). And the timing specification of the sequence is shown in Table.8.4.3.

Power-up sequence of SPI slave communication;

Before starting communication, VDD shall be set to "H" level and SPIREQ shall be set to "H" level in a row. Then SPIACK outputs "H" level in the time of tOAV from the rising edge of SPIREQ. In parallel, XCS shall be set to "H" level within the time of tCUS from the rising edge of SPIREQ. SPI slave communication can start when XCS is set to "L" level in the time of tPU from the rising edge of SPIACK.

Power-down sequence of SPI slave communication;

After taking the period of tPD from the rising edge of XCS, SPIREQ shall be set to "L" level. Then SPIACK outputs "L" level in the time of tOHA from the falling edge of SPIREQ. In parallel, XCS shall be set to "L" level within the time of tCHS from the falling edge of SPIREQ. When VDD will be turned off, VDD shall be set to "L" level in more than the time of tPH from the falling edge of SPIACK.

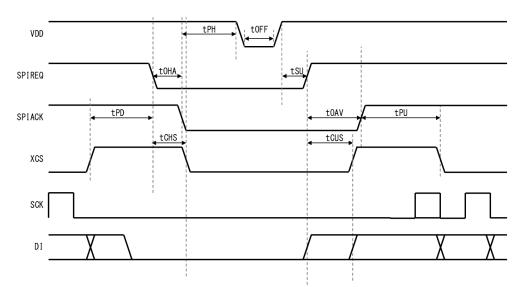



Figure 8.4.3.1 Power sequence (SPI master function is not used with VDD off control)

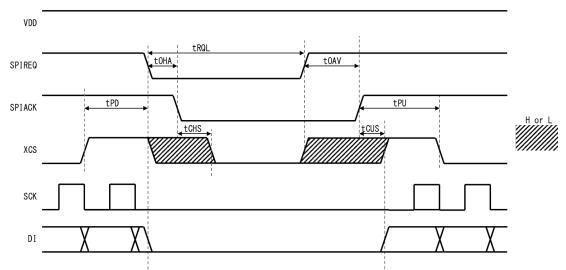



Figure 8.4.3.2 Power sequence (SPI master function is not used without VDD off control)

| Parameter                        | Symbol |      | Value |       | Unit |
|----------------------------------|--------|------|-------|-------|------|
| i arameter                       | Gymbol | MIN  | TYP   | MAX   | Unit |
| SPIREQ rising start time         | tSU    | 500  |       | —     | μs   |
| SPIREQ low time                  | tRQL   | 1000 |       | —     | μs   |
| Power hold time                  | tPH    | 0    | —     | —     | μs   |
| XCS level hold time at power ON  | tPU    | 10   | —     | —     | μs   |
| XCS level hold time at power OFF | tPD    | 1    | _     | —     | μs   |
| Power off time                   | tOFF   | 1000 | —     | —     | μs   |
| Output SPIACK definite time      | tOAV   | 1    |       | 20000 | μs   |
| Output SPIACK hold time          | tOHA   | 5    |       | 10000 | ns   |
| XCS setup time(start)            | tCUS   |      | _     | 1     | μs   |
| XCS hold time(start)             | tCHS   | 0    |       |       | μs   |

| Table 8.4.3 | Timing  | specifications | during S | SPI slave  | communication |
|-------------|---------|----------------|----------|------------|---------------|
| 14010 0.4.5 | rinning | specifications | uuring . | SI I Slave | communication |

If the device does not operate within the specified conditions of cycle or power on/off sequence, memory data cannot be guaranteed.



# ■ 8.4.4 Power Sequence (SPI Master function is used)

In SPI slave communication mode, the power sequence when SPI master function is used is shown in Figure 8.4.4.1 (with VDD off control), and Figure 8.4.4.2 (without VDD off control). And the timing specification of the sequence is in common as shown in Table.8.4.3.

Power-up sequence of SPI slave communication;

Before starting communication, VDD shall be set to "H" level and SPIREQ shall be set to "H" level in a row. Then SPIACK outputs "H" level in the time of tOAV from the rising edge of SPIREQ. At this point, XCS and SCK shall be "Hi-Z" because SPI master operation may have been used during the period when SPI has been "L" level. XCS shall be set to "H" level within the period of tCUS from the rising edge of SPIACK, and SCK shall be set to "L" level at the same time. SPI slave communication can start when XCS is set to "L" level in the time of tPU from the rising edge of SPIACK.

Power-down sequence of SPI slave communication;

After taking the period of tPD from the rising edge of XCS, SPIREQ shall be set to "L" level. Then SPIACK outputs "L" level in the time of tOHA from the falling edge of SPIREQ. After taking the time of tCHS from the falling edge of SPIACK, the input to XCS and SCK will be invalid and shall be set to "Hi-Z" in order to enable XCS and SCK for SPI master communication. When VDD will bew turned off, VDD shall be set to "L" level in the period of tPH from the falling edge of SPIACK.

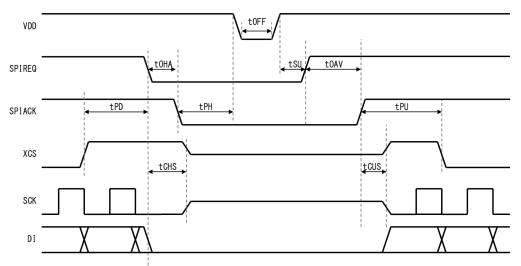



Figure 8.4.4.1 Power sequence (SPI master function is used with VDD off control)

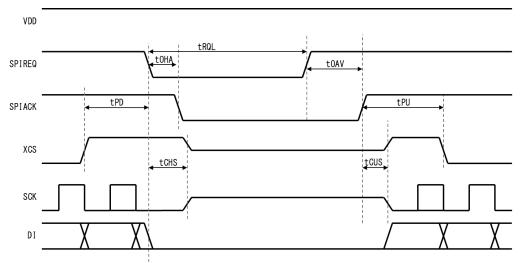



Figure 8.4.4.2 Power sequence (SPI master function is used without VDD off control)



# ■ 8.5 SPI Master Communication

### ■ 8.5.1 DC Characteristics

 Table 8.5.1
 DC Characteristics

|                          |        |             | Value |             |      |                   |
|--------------------------|--------|-------------|-------|-------------|------|-------------------|
| Parameter                | Symbol | MIN         | TYP   | MAX         | Unit | Conditions        |
| Input leakage current    | ILI    | —           | _     | ±1          | μA   | <b>※</b> 1        |
| Output leakage current   | ILO    | —           | _     | ±1          | μA   | "Hi-Z" state  ※3  |
| Power output voltage     | VDOUT3 | 2.95        | _     | 3.6         | V    | refer to 7.4.2 ※2 |
| "H" level Input voltage  | VIH    | VOPSPI3×0.7 | _     | VOPSPI3+0.5 | V    | <b>%</b> 1        |
| "L" level Input voltage  | VIL    | -0.5        | _     | VOPSPI3×0.3 | V    | <b>%</b> 1        |
| "H" level Output voltage | VOH    | VOPSPI3-0.5 | _     | _           | V    | IOH=-0.5mA 3      |
| "L" level Output voltage | VOL    | _           | _     | 0.4         | V    | IOL= 0.5mA %3     |

1 : DI Pin 2 : VDOUT3, VDIO Pin 3 : XCS, SCK, DO, CD, XRST Pin

### ■ 8.5.2 AC Characteristics

Table 8.5.2-AC Characteristics

| Parameter              | Symbol |     | Value |      | Unit | Related Pin |
|------------------------|--------|-----|-------|------|------|-------------|
| Farameter              | Symbol | MIN | TYP   | MAX  | Unit | Related Pin |
| SCK clock frequency    | fCK    | 3.9 | _     | 500  | kHz  | SCK         |
| Clock high time        | tCH    | 300 | —     | _    | ns   | SCK         |
| Clock low time         | tCL    | 300 |       | _    | ns   | SCK         |
| Chip select setup time | tCSU   | 600 |       | _    | ns   | XCS,CD,SCK  |
| Chip select hold time  | tCSH   | 300 |       | _    | ns   | XCS,CD,SCK  |
| Input enable time      | tIDLZ  | 10  | —     | _    | ns   | DI          |
| Input disable time     | tIDZ   | _   |       | 1200 | ns   | DI,XCS      |
| Output setup time      | tDOS   | 35  | —     | _    | ns   | DO,SCK      |
| Output hold time       | tDOH   | 300 |       | _    | ns   | DO,SCK      |
| Output disable time    | tODZ   | 0   |       | 10   | ns   | DO          |
| Data rise time         | tR     | _   |       | 5    | ns   | DI          |
| Data fall time         | tF     |     | —     | 5    | ns   | DI          |
| Data confirm time      | tIDV   |     | —     | 100  | ns   | DI,SCK      |
| Data hold time         | tIDH   | 10  |       |      | ns   | DI,SCK      |

# MB97R8110

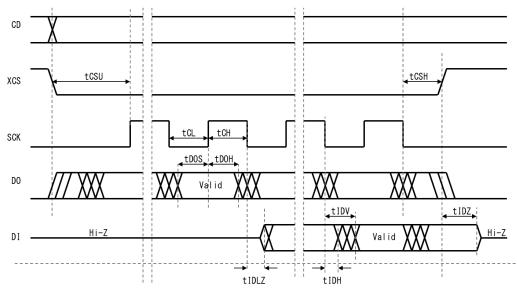



Figure 8.5.2.1 - SPI master timing(MuxDio=0)

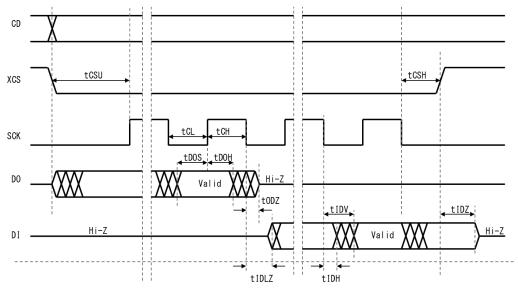



Figure 8.5.2.2 - SPI master timing(MuxDio=1)

# ■ 8.6 Key Matrix scan Characteristics

### ■ 8.6.1 DC Characteristics

Table 8.6.1-DC Characteristics

|                          |         |             | Value |             |      |              |
|--------------------------|---------|-------------|-------|-------------|------|--------------|
| Parameter                | Symbol  | MIN         | TYP   | MAX         | Unit | Condition    |
| Input leakage current    | ILI     | _           | _     | ±1          | μA   | "L" Input ※1 |
|                          |         | _           | 12    |             | μA   | "L" Input ※1 |
| Output leakage current   | ILO     | _           | _     | ±1          | μA   | "Hi-Z" ※2    |
| Power output voltage     | VDOUT18 | 1.65        | _     | 1.95        | V    | *3           |
| "H" level Input voltage  | VIH     | VDOUT18×0.7 | _     | VDOUT18+0.5 | V    | <b>※</b> 1   |
| "L" level Input voltage  | VIL     | -0.5        | _     | VDOUT18×0.3 | V    | <b>%</b> 1   |
| "H" level Output voltage | VOH     | VDOUT18-0.5 | _     | VDOUT18     | V    | IOH=−10µA ※2 |
| Pull-down resistance     | RIN     | _           | 150   | _           | kΩ   | <b>%</b> 1   |

%1 : KR[0:7] Pin %2 : KC[0:15]Pin %3 : VDOUT18Pin

### ■ 8.6.2 AC Characteristics

Table 8.6.2-AC Characteristics

| Parameter                         | Symbol |     | Value |     | Related Pin |                |  |
|-----------------------------------|--------|-----|-------|-----|-------------|----------------|--|
| i arameter                        | Cymbol | MIN | TYP   | MAX | Onit        | Related Fill   |  |
| "H" level output period of KC Pin | tOKH   | _   | 256   | _   | μs          | refer to 7.3.1 |  |

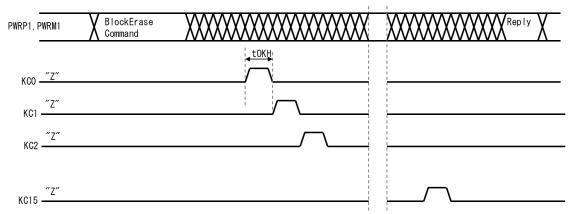



Figure 8.6.2 -Key Matrix scan timing

# ■ 8.7 GPIO Characteristics

### ■ 8.7.1 DC Characteristics

 Table 8.7.1
 DC Characteristics

|                          | Symbol | Value    |     |          |      |                        |
|--------------------------|--------|----------|-----|----------|------|------------------------|
| Parameter                |        | MIN      | TYP | MAX      | Unit | Conditions             |
| Input leakage current    | ILI    |          | _   | ±1       | μA   | <b>%</b> 1             |
| Output leakage current   | ILO    |          | _   | ±1       | μA   | "Hi-Z" output     ※2   |
| "H" level Input voltage  | VIH    | VDIO×0.7 | _   | VDIO+0.5 | V    | <b>※</b> 1, <b>※</b> 3 |
| "L" level Input voltage  | VIL    | -0.5     | _   | VDIO×0.3 | V    | <b>※</b> 1, <b>※</b> 3 |
| "H" level Output voltage | VOH    | VDIO-0.5 | _   | VDIO     | V    | IOH =-0.5mA            |
| "L" level Output voltage | VOL    | 0        | —   | 0.4      | V    | IOL = 0.5mA %2         |

\*1 : INT Pin \*2 : COM[2:0] Pin \*3 : VDIO voltage is provided by VDOUT3.



# ■ 8.7.2 AC Characteristics

Table 8.7.2 - AC Characteristics

|                        |        |     | Value |     | 110:4 | Related Pin |
|------------------------|--------|-----|-------|-----|-------|-------------|
| Parameter              | Symbol | MIN | TYP   | MAX | Unit  |             |
| COM output update time | tOCV   | _   | —     | 1   | ms    | COM[2:0]    |
| INT input setup time   | tIIS   | 0   | —     |     |       | INT %1      |
| INT input hold time    | tIIH   | _   | —     | T1  | ms    | INT %1      |

**%**1:INT information is read out at the input timing described in Table 8.7.2 and Figure 8.7.2.2. T1 is the T1 time specified in EPC standard.

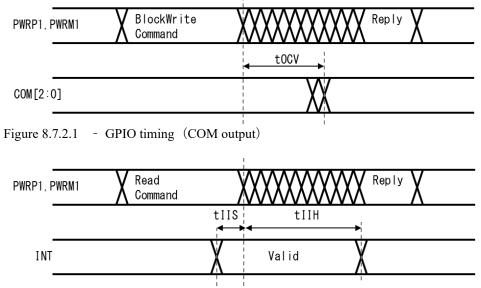



Figure 8.7.2.2 - GPIO timing (INT input)

### ■ 9 Ordering Information

| Part Number      | Shipping Method       | Wafer thickness              |  |  |
|------------------|-----------------------|------------------------------|--|--|
| MB97R8110-WF     | Wafer                 | 725 μm <del>±2</del> 0 μm    |  |  |
| MB97R8110-DI15   | Sawn wafer            | 150 μm <del>±2</del> 2.54 μm |  |  |
| MB97R8110-CHIP15 | Chip (in Waffle pack) | 150 μm <del>±2</del> 2.54 μm |  |  |

# **MB97R8110**

# **RAMXEED LIMITED**

Shin-Yokohama Chuo Building, 2-100-45 Shin-Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-0033, Japan *https://ramxeed.com/* 

#### All Rights Reserved.

RAMXEED LIMITED, its subsidiaries and affiliates (collectively, "RAMXEED") reserves the right to make changes to the information contained in this document without notice. Please contact your RAMXEED sales representatives before order of RAMXEED device.

Information contained in this document, such as descriptions of function and application circuit examples is presented solely for reference to examples of operations and uses of RAMXEED device. RAMXEED disclaims any and all warranties of any kind, whether express or implied, related to such information, including, without limitation, quality, accuracy, performance, proper operation of the device or non-infringement. If you develop equipment or product incorporating the RAMXEED device based on such information, you must assume any responsibility or liability arising out of or in connection with such information or any use thereof. RAMXEED assumes no responsibility or liability for any damages whatsoever arising out of or in connection with such information or any use thereof.

Nothing contained in this document shall be construed as granting or conferring any right under any patents, copyrights, or any other intellectual property rights of RAMXEED or any third party by license or otherwise, express or implied. RAMXEED assumes no responsibility or liability for any infringement of any intellectual property rights or other rights of third parties resulting from or in connection with the information contained herein or use thereof.

The products described in this document are designed, developed and manufactured as contemplated for general use including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high levels of safety is secured, could lead directly to death, personal injury, severe physical damage or other loss (including, without limitation, use in nuclear facility, aircraft flight control system, air traffic control system, mass transport control system, medical life support system and military application), or (2) for use requiring extremely high level of reliability (including, without limitation, submersible repeater and artificial satellite). RAMXEED shall not be liable for you and/or any third party for any claims or damages arising out of or in connection with above-mentioned uses of the products.

Any semiconductor devices fail or malfunction with some probability. You are responsible for providing adequate designs and safeguards against injury, damage or loss from such failures or malfunctions, by incorporating safety design measures into your facility, equipments and products such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions. The products and technical information described in this document are subject to the Foreign Exchange and Foreign Trade

The products and technical information described in this document are subject to the Foreign Exchange and Foreign Trade Control Law of Japan, and may be subject to export or import laws or regulations in U.S. or other countries. You are responsible for ensuring compliance with such laws and regulations relating to export or re-export of the products and technical information described herein.

All company names, brand names and trademarks herein are property of their respective owners.