Memory FeRAM

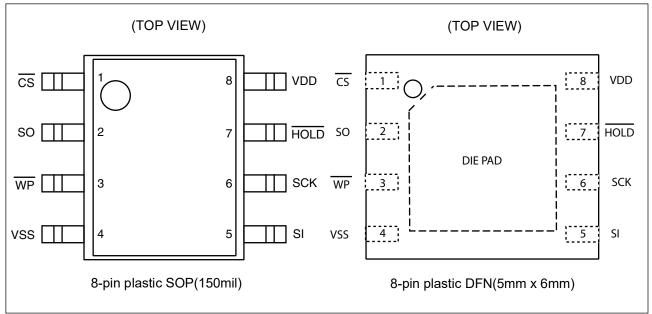
1M (128K \times 8) Bit SPI

MS85RS1MTY(AEC-Q100 Compliant)

DESCRIPTION

MS85RS1MTY is a FeRAM (Ferroelectric Random Access Memory) chip in a configuration of 131,072 words \times 8 bits, using the ferroelectric process and silicon gate CMOS process technologies for forming the nonvolatile memory cells. This product is specifically targeted for high-temperature environment such as automobile applications.

MS85RS1MTY adopts the Serial Peripheral Interface (SPI).

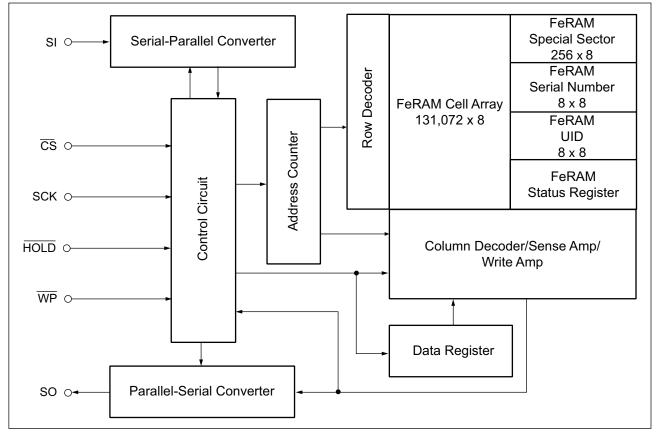

The MS85RS1MTY is able to retain data without using a back-up battery, as is needed for SRAM. The memory cells used in the MS85RS1MTY can be used for 10¹³ read/write operations, which is a significant improvement over the number of read and write operations supported by Flash memory and E²PROM. As MS85RS1MTY does not need any waiting time in writing process, the write cycle time of MS85RS1MTY is much shorter than that of Flash memories or E²PROM.

FEATURES

Bit configurationSpecial Sector Region	: 131,072 words \times 8 bits : 256 words \times 8 bits In this region, data storage after (by) three times reflow based on JEDEC MSL-3 standard condition is guaranteed.
Unique ID	
Serial Number	: 64 bits In this region, data storage after (by) three times reflow based on JEDEC MSL-3 standard condition is guaranteed.
 Serial Peripheral Interface 	: SPI (Serial Peripheral Interfaces)
	Correspondent to SPI mode 0 (0, 0) and mode 3 (1, 1)
 Operating frequency 	: 50 MHz (Max)
High endurance	: 10 ¹³ times (+125 °C),
Data retention	: 70.4 years (+85 °C), 19.1 years (+105 °C), 5.9 years (+125 °C) or more
	Under evaluation for more than 5.9 years(+125 °C)
 Operating power supply voltage 	: 1.8 V to 3.6 V
Low power consumption	: Operating power supply current 4mA (Max@50 MHz) Standby current 150μA (Max) Deep Power Down current 30μA (Max) Hibernate current 10μA (Max)
 Operation ambient temperature range Package	e : – 40 °C to +125 °C 8-pin plastic SOP (150mil) 8-pin plastic DFN (5mm x 6mm) RoHS compliant

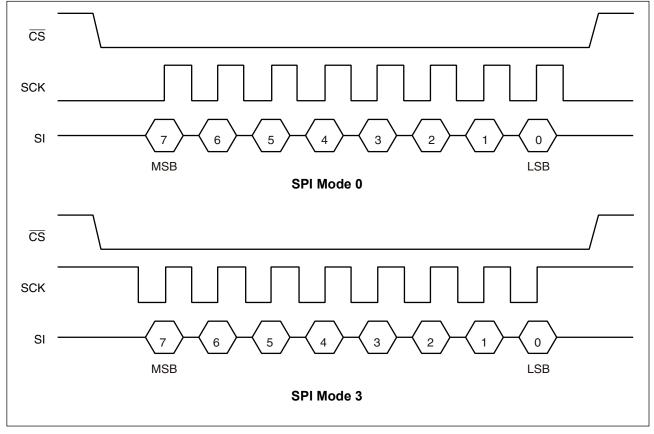
Fujitsu Semiconductor Memory Solutions Limited has changed its name to RAMXEED Limited. RAMXEED Limited will continue to offer and support existing products while maintaining Fujitsu's part number unchanged.

PIN ASSIGNMENT



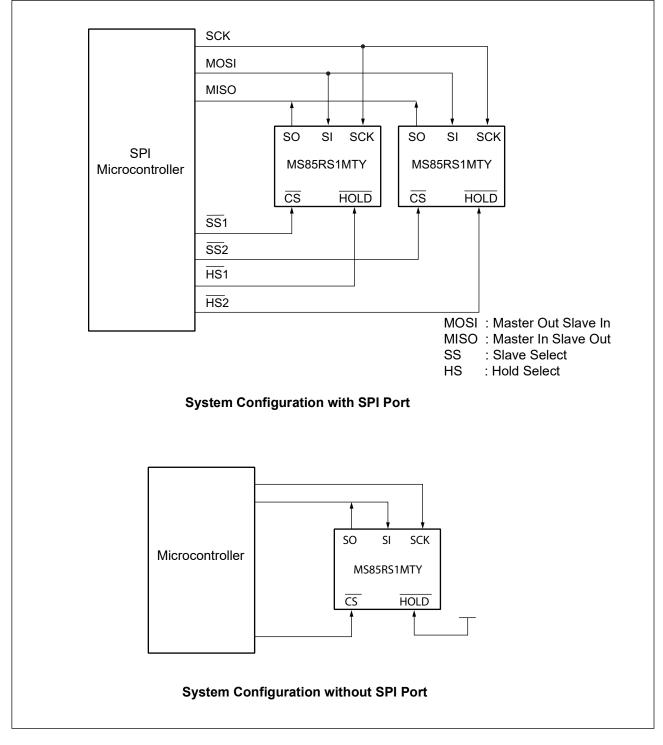
■ PIN FUNCTIONAL DESCRIPTIONS

Pin No.	Pin Name	Functional description
1	CS	Chip Select pin This is an input pin to make chips select. When \overline{CS} is "H" level, device is in deselect (standby) status and SO becomes High-Z. Inputs from other pins are ignored for this time. When \overline{CS} is "L" level, device is in select (active) status. \overline{CS} has to be "L" level before inputting op-code.
3	WP	Write Protect pin This is a pin to control writing to a status register. The writing of status register (see "■ STATUS REGISTER") is protected in related with WP and WPEN. See "■WRITING PROTECT" for detail.
7	HOLD	Hold pin <u>This pin is used to interrupt serial input/output without making chips deselect.</u> When HOLD is "L" level, hold operation is activated, SO becomes High-Z, SCK and SI become do not care. See " ■HOLD OPERATION" for detail. The Hold pin is pulled up internally to the VDD pin.
6	SCK	Serial Clock pin This is a clock input pin to input/output serial data. SI is loaded synchronously to a rising edge, SO is output synchronously to a falling edge.
5	SI	Serial Data Input pin This is an input pin of serial data. This inputs op-code, address, and writing data.
2	SO	Serial Data Output pin This is an output pin of serial data. Reading data of FeRAM memory cell array and status register data are output. This is High-Z during standby.
8	VDD	Supply Voltage pin
4	VSS	Ground pin


MS85RS1MTY(AEC-Q100 Compliant)

BLOCK DIAGRAM

SPI MODE


MS85RS1MTY corresponds to the SPI mode 0 (CPOL = 0, CPHA = 0) , and SPI mode 3 (CPOL = 1, CPHA = 1) .

■ SERIAL PERIPHERAL INTERFACE (SPI)

MS85RS1MTY works as a slave of SPI. More than 2 devices can be connected by using microcontroller equipped with SPI port. By using a microcontroller not equipped with SPI port, SI and SO can be bus connected to use.

■ STATUS REGISTER

Bit No.	Bit Name	Function
7	WPEN	Status Register Write Protect This is a bit composed of nonvolatile memories (FeRAM). WPEN protects writing to a status register (refer to "■ WRITING PROTECT") relating with WP input. Writing with the WRSR command and reading with the RDSR command are possible.
6 to 4	_	Not Used Bits These are bits composed of nonvolatile memories, writing with the WRSR command is possible. These bits are not used but they are read with the RDSR command.
3	BP1	Block Protect This is a bit composed of nonvolatile memory. This defines size of write
2	BP0	protect block for the WRITE command (refer to "■ BLOCK PROTECT"). Writing with the WRSR command and reading with the RDSR command are possible.
1	WEL	Write Enable Latch This indicates FeRAM Array and status register are writable. The WREN command is for setting, and the WRDI command is for resetting. With the RDSR command, reading is possible but writing is not possible with the WRSR command. WEL is reset after the following operations. After power ON. After WRDI command recognition. After return from DPD mode. After return from Hibernate mode. Achieving continuous writing mode, WEL is not reset after following oper- ations making it possible to execute writing commands continuously. After WRSR command recognition. After WRSR command recognition. After WRSR command recognition. After WRSN command recognition. After SSWR command recognition.
0	0	This is a bit fixed to "0".

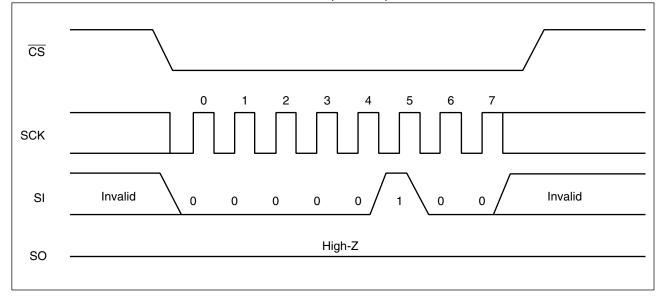
■ OP-CODE

MS85RS1MTY accepts 16 kinds of command specified in op-code. Op-code is a code composed of 8 bits shown in the table below. Do not input invalid codes other than those codes. If \overline{CS} is risen while inputting op-code, the command are not performed.

Name	Description	Op-code
WREN	Set Write Enable Latch	0000 0110в
WRDI	Reset Write Enable Latch	0000 0100в
RDSR	Read Status Register	0000 0101в
WRSR	Write Status Register	0000 0001в
READ	Read Memory Code	0000 0011 _в
WRITE	Write Memory Code	0000 0010в
FSTRD	Fast Read Memory Code	0000 1011в
DPD	Deep Power Down Mode	1011 1010в
HIBERNATE	Hibernate Mode	1011 1001в
RDID	Read Device ID	1001 1111в
RUID	Read Unique ID	0100 1100в
WRSN	Write Serial Number	1100 0010 _в
RDSN	Read Serial Number	1100 0011в
SSWR	Write Special Sector	0100 0010в
SSRD	Read Special Sector	0100 1011в
FSSRD	Fast Read Special Sector	0100 1001в
		1100 1110 _B
RFU	Reserved	1100 1111в
		1100 1100 _B

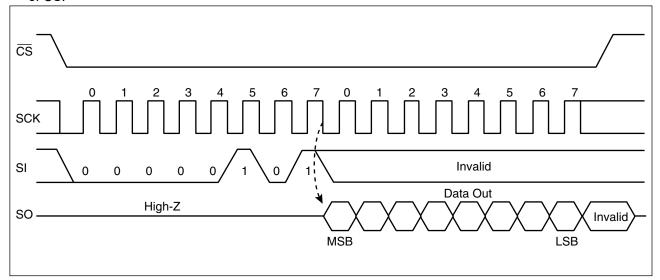
RAMXEED

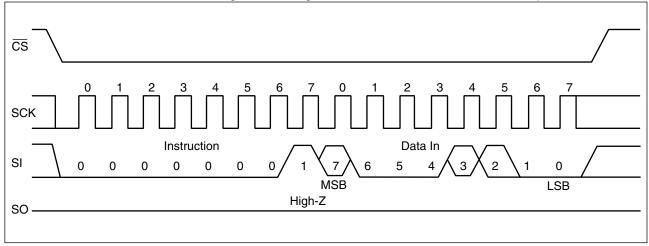
COMMAND


• WREN

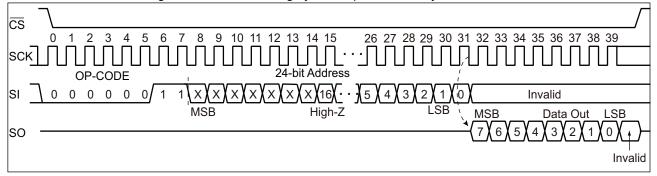
The WREN command sets WEL (Write Enable Latch) bit to 1. WEL has to be set with the WREN command before writing operation (WRSR command, WRITE command, WRSN command and SSWR command).

• WRDI

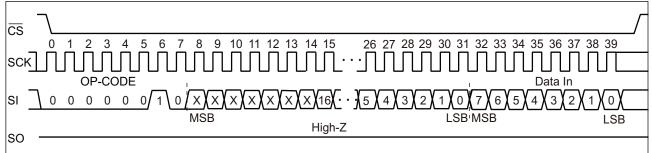

The WRDI command resets WEL (Write Enable Latch) bit to 0. Writing operation (WRSR command, WRITE command, WRSN command and SSWR command) are not performed when WEL is reset.


• RDSR

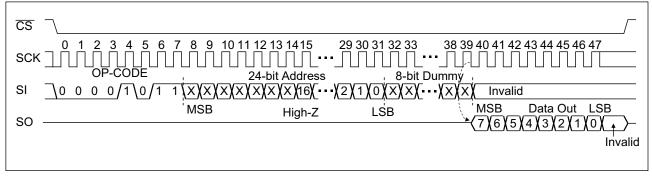
The RDSR command reads status register data. After op-code of RDSR is input to SI, 8-cycle clock is input to SCK. The SI value is invalid for this time. SO is output synchronously to a falling edge of SCK. In the RDSR command, repeated reading of status register is enabled by sending SCK continuously before rising of \overline{CS} .


• WRSR

The WRSR command writes data to the nonvolatile memory bit of status register. After performing WRSR op-code to a SI pin, 8 bits writing data is input. WEL (Write Enable Latch) is not able to be written with WRSR command. A SI value correspondent to bit 1 is ignored. Bit <u>0</u> of the status register is fixed to "0" and cannot be written. The SI value corresponding to <u>bit 0</u> is ignored. WP signal level shall be fixed before performing WRSR command, and do not change the WP signal level until the end of command sequence.


• READ

The READ command reads FeRAM memory cell array data. Arbitrary 24 bits address and op-code of READ are input to SI. The 7-bit upper address is invalid. Then, 8-cycle clock is input to SCK. SO is output synchronously to the falling edge of SCK. While reading, the SI value is invalid. When \overline{CS} is risen, the READ command is completed, but keeps on reading with automatic address increment which is enabled by continuously sending clocks to SCK in unit of 8 cycles before \overline{CS} rising. When it reaches the most significant address, it rolls over to the starting address, and reading cycle keeps on infinitely.

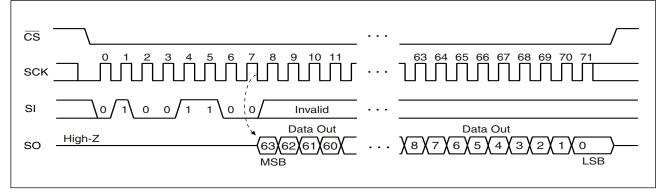

• WRITE

The WRITE command writes data to FeRAM memory cell array. WRITE op-code, arbitrary 24 bits of address and 8 bits of writing data are input to SI. The 7-bit upper address is invalid. When 8 bits of writing data is input, data is written to FeRAM memory cell array. Risen \overline{CS} will terminate the WRITE command, but if you continue sending the writing data for 8 bits each before \overline{CS} rising, it is possible to continue writing with automatic address increment. When it reaches the most significant address, it rolls over to the starting address, and writing cycle can be continued infinitely.

FSTRD

The FSTRD command reads FeRAM memory cell array data. Arbitrary 24bits address and op-code of FSTRD are input to SI followed by 8 bits dummy. The 7-bit upper address is invalid. Then, 8-cycle clock is input to SCK. SO is output synchronously to the falling edge of SCK. While reading, the SI value is invalid. When CS is risen, the FSTRD command is completed, but keeps on reading with automatic address increment which is enabled by continuously sending clocks to SCK in unit of 8 cycles before CS rising. When it reaches the most significant address, it rolls over to the starting address, and reading cycle keeps on infinitely.

• RDID

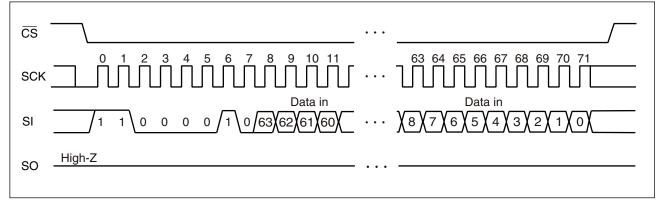

The RDID command reads fixed Device ID. After performing RDID op-code to SI, 32-cycle clock is input to SCK. The SI value is invalid for this time. SO is output synchronously to a falling edge of SCK. The output is in order of Manufacturer ID (8bit)/Continuation code (8bit)/Product ID (1st Byte)/Product ID (2nd Byte). In the RDID command, 32-bit Device ID is output by continuously sending SCK clock, and SO holds the output state of the last bit until \overline{CS} is risen.

CS										
scк, 0 1 2 3 4 5 6 7 8 9 10 11 31 32 33 34 35 36 37 38 39										
SI1 0 0	SI $1 0 0 1 1 1 1 1$ Invalid \cdots									
SO High-Z	SO High-Z Data Out (31)(30)(29)(28))(8)(7)(6)(5)(4)(3)(2)(1)(0) MSB LSB									
				b	oit					_
	7	6	5	4	3	2	1	0	Hex	
Manufacturer ID	0	0	0	0	0	1	0	0	04н	
Continuation code	0	1	1	1	1	1	1	1	7 Fн	
	Prop	rietar	y use		נ	Densit	y		Hex	
Product ID (1st Byte)	0	1	0	0	0	1	1	1	47 н	Density: 00111 _B = 1Mbit
		. ,						Hex		
Product ID (2nd Byte)	0	0	0	0	0	0	1	1	03н	

• RUID

The RUID command reads an unique ID which is defined in 64bits for each device. After performing RUID op-code to SI, 64-cycle clock is input to SCK. The SI value is invalid for this time. SO is output synchronously to a falling edge of SCK.

The unique ID is stable between before and after reflow. Refer "■ REFLOW CONDITIONS AND FLOOR LIFE" for the reflow condition.



•WRSN

The WRSN command writes data to serial number region which is allowed to write only one time. After performing WRSN op-code to SI, 64bits of writing data is input. Once wrote, the serial number region is protected, disabling to overwrite even when issuing WRSN command.

WP signal level shall be fixed before performing WRSN command, and do not change the WP signal level until the end of command sequence.

RDSN

The RDSN command reads 64 bits of serial number which is written using WRSN command. After performing RDSN op-code to SI, 64-cycle clock to SCK. The SI value is invalid for this time. SO is output synchronously to a falling edge of SCK. When reading serial number from devices which no WRSN command is executed, "0" for all bits are output.

The serial number is stable between before and after reflow. Refer "■ REFLOW CONDITIONS AND FLOOR LIFE" for the reflow condition.

cs		-
scк ⁰ 1 ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ ¹¹	$[\cdots] \stackrel{63}{\longrightarrow} \stackrel{64}{\longrightarrow} \stackrel{65}{\longrightarrow} \stackrel{66}{\longrightarrow} \stackrel{67}{\longrightarrow} \stackrel{68}{\longrightarrow} \stackrel{69}{\longrightarrow} \stackrel{70}{\longrightarrow} \stackrel{71}{\longrightarrow} \stackrel{71}{\rightarrow} \stackrel{71}{\rightarrow} 71$	-
SI1 1 0 0 0 0 1 1 Invalid		-
SO High-Z Data Out 63(62)(61)(60) MSB	$\frac{\text{Data Out}}{(1,2)} \frac{(1,2)}{(2,2)} (1,2$	-

SSWR

The SSWR command writes data to special sector (a special region of 256 Byte in FeRAM). SSWR op-code, arbitrary 24 bits address and 8-bit writing data are input to SI. The 16-bit upper address is invalid. When input of 8-bit writing data is completed, it starts writing data to special sector. Risen \overline{CS} will terminate the SSWR command, but if you continue the writing data for each before \overline{CS} rising, it is possible to continue writing with automatic address increment. When it reaches the most significant address, roll over is not happen, the data hereafter is ignored.

The data in special sector is stable between before and after reflow. Refer "■ REFLOW CONDITIONS AND FLOOR LIFE" for the reflow condition.

0 1 2 3 4 5 6 7 8 9 10 11 23 24 25 26 27 28 29 30 31 32 33 34 35 SCK	
$SI _ 0 / 1 \setminus 0 = 0 = 0 / 1 \setminus 0 / X X X X X \cdots X X 7 X 6 X 5 X 4 X 3 X 2 X 1 X 0 X 7 X 6 X 5 X 6 X 5 X 6 X 5 X 6 X 6 X 6 X 7 X 7$	3 (2 (1) 0)
SO SO LSB MSB	LSB

SSRD

The SSRD command reads data from special sector (a special region of 256 Byte in FeRAM). SSWR opcode and arbitrary 24 bits address are input to SI. The 16-bit upper address is invalid. Then, 8-cycle clock is input to SCK. SO is output synchronously to the falling edge of SCK. While reading, the SI value is invalid. When CS is risen, the SSRD command is completed, but keeps on reading with automatic address increment which is enabled by continuously sending clocks to SCK in unit of 8 cycles before CS rising. When it reaches the most significant address, roll over is not happen.

The data in special sector is stable between before and after reflow. Refer "■ REFLOW CONDITIONS AND FLOOR LIFE" for the reflow condition.

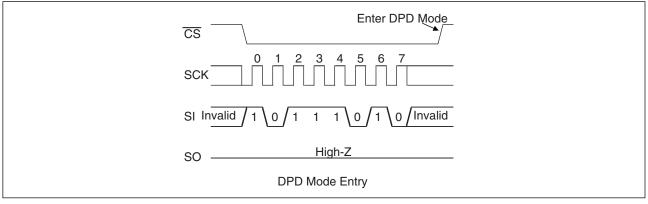
0 1 2 3 4 5 6 7 8 9 10 11 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 SCK
ope. code24 bit addresses
SI $1 \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} 1$
SO MSB High-Z LSB MSB Data Out LSB SO $7 \sqrt{6} \sqrt{5} \sqrt{4} \sqrt{3} \sqrt{2} \sqrt{1} \sqrt{0} \sqrt{4}$
Invalid

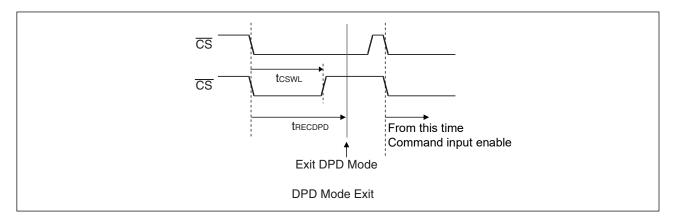
RAMXEED

• FSSRD

The SSRD command reads data from special sector (a special region of 256 Byte in FeRAM). SSWR opcode and arbitrary 24 bits address are input to SI followed by 8 bits dummy. The 7-bit upper address is invalid. Then, 8-cycle clock is input to SCK. SO is output synchronously to the falling edge of SCK. While reading, the SI value is invalid. When \overline{CS} is risen, the SSRD command is completed, but keeps on reading with automatic address increment which is enabled by continuously sending clocks to SCK in unit of 8 cycles before \overline{CS} rising. When it reaches the most significant address, roll over is not happen.

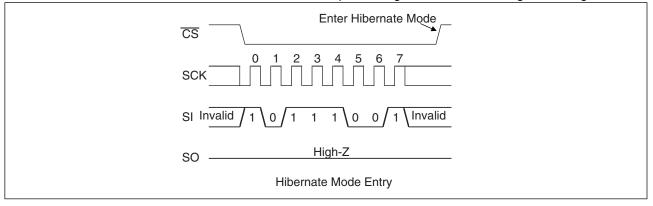
The data in special sector is stable between before and after reflow. Refer "■ REFLOW CONDITIONS AND FLOOR LIFE" for the reflow condition.

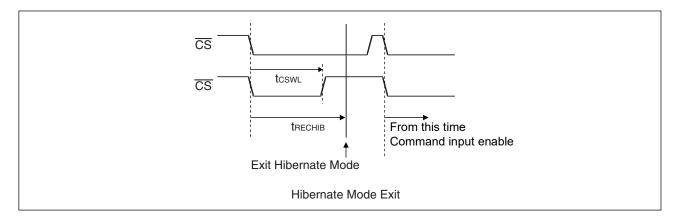

CS		_
SCK	0 1 2 3 4 5 6 7 8 9 10 11 23 24 25 26 2728 29 30 31 32 33 38 39 40 41 42 43 44 45 46 47	_
	ope. code _ 24 bit addresses 8 bit dummy/ _	
SI	$\frac{1}{0} \sqrt{1} \sqrt{0} \sqrt{1} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} 2$	_
so	MSB High-Z LSB MSB Data Out LSB	<u> </u>
00		,
	Inva	lid


• DPD(Deep Power Down)

The DPD command shifts the LSI to a low power mode called "DPD mode". The transition to the DPD mode is carried out at the rising edge of \overline{CS} after operation code in the DPD command. However, when at least one SCK clock is inputted before the rising edge of \overline{CS} after operation code in the DPD command, this DPD command is canceled.

After the DPD mode transition, SCK and SI inputs are ignored and SO changes to a High-Z state.


Returning to an normal operation from the DPD mode is carried out after t_{RECDPD} (Max 10 µs) time from the falling edge of \overline{CS} (see the figure below). It is possible to return \overline{CS} to H level before t_{RECDPD} time. However, it is prohibited to bring down \overline{CS} to L level again during t_{RECDPD} period.


• HIBERNATE

The HIBERNATE command shifts the LSI to a low power mode called "HIBERNATE mode". The transition to the HIBERNATE mode is carried out at the rising edge of \overline{CS} after operation code in the HIBERNATE command. However, when at least one SCK clock is inputted before the rising edge of \overline{CS} after operation code in the HIBERNATE command, this HIBERNATE command is canceled.

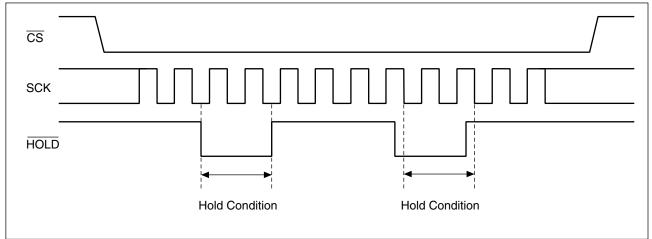
After the HIBERNATE mode transition, SCK and SI inputs are ignored and SO changes to a High-Z state.

Returning to an normal operation from the HIBERNATE mode is carried out after t_{RECHIB} (Max 450 µs) time from the falling edge of CS (see the figure below). It is possible to return $\overline{\text{CS}}$ to H level before t_{RECHIB} time. However, it is prohibited to bring down $\overline{\text{CS}}$ to L level again during t_{RECHIB} period.

BLOCK PROTECT

Writing protect block for WRITE command is configured by the value of BP0 and BP1 in the status register.

BP1	BP0	Protected Block	
0	0	None	
0	1	18000н to 1FFFFн (upper 1/4)	
1	0	10000н to 1FFFFн (upper 1/2)	
1	1	00000н to 1FFFFн (all)	


WRITING PROTECT

Writing operation of the WRITE command and the WRSR command are protected with the value of WEL, WPEN, WP as shown in the table.

WEL	WPEN	WP	WP Protected Blocks Unprotected Blocks		Status Register	
0	Х	Х	Protected	Protected	Protected	
1	0	Х	Protected	Unprotected	Unprotected	
1	1	0	Protected	Unprotected	Protected	
1	1	1	Protected	Unprotected	Unprotected	

HOLD OPERATION

Hold status is retained without aborting a command if HOLD is "L" level while \overline{CS} is "L" level. The timing for starting and ending hold status depends on the SCK to be "H" level or "L" level when a HOLD pin input is transited to the hold condition as shown in the diagram below. In case the HOLD pin transited to "L" level when SCK is "L" level, return the HOLD pin to "H" level at SCK being "L" level. In the same manner, in case the HOLD pin transited to "L" level when SCK is "H" level when SCK is "H" level when SCK is "H" level at SCK being "L" level. In the same manner, in case the HOLD pin transited to "L" level when SCK is "H" level, return the HOLD pin to "H" level at SCK being "L" level at SCK being "H" level. Arbitrary command operation is interrupted in hold status, SCK and SI inputs become do not care. And, SO becomes High-Z while reading command (RDSR, READ). If \overline{CS} is rising during hold status, a command is aborted. In case the command is aborted before its recognition, WEL holds the value before transition to hold status.

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	Unit		
Fardineter	Symbol	Min	Мах	Ont	
Power supply voltage*	Vdd	- 0.5	+ 4.0	V	
Input voltage*	VIN	- 0.5	$V_{\text{DD}} + 0.5 (\leq 4.0)$	V	
Output voltage*	Vout	- 0.5	$V_{\text{DD}} + 0.5 (\leq 4.0)$	V	
Operation ambient temperature	TA	- 40	+ 125	°C	
Storage temperature	Tstg	- 55	+ 150	°C	

*: These parameters are based on the condition that Vss is 0 V.

WARNING: Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Unit		
Falametei	Symbol	Min	Тур	Max	Omt
Power supply voltage ^{*1}	Vdd	1.8	3.3	3.6	V
Operation ambient temperature*2	TA	- 40		+ 125	°C

*1: These parameters are based on the condition that Vss is 0 V.

*2: Ambient temperature when only this device is working. Please consider it to be the almost same as the package surface temperature.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.

Any use of semiconductor devices will be under their recommended operating condition. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.

No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(within recommended operating conditions)

					Value			
Parameter	Sym- bol	Condition		Min	Typ (T _A =25 °C)	Max	Unit	
		$\overline{CS} = V_{DD}$	25 °C			1		
		CS = VDD	125 °C			2		
Input leakage current*1	[1]	WP, SCK, CS	25 °C			1		
input leakage current	IILII	$SI = 0 V to V_{DD}$	125 °C	—	—	2	μA	
		HOLD = 0 V to	25 °C	_	_	100		
		Vdd	125 °C			100		
Output leakage current*2	IL0	SO = 0 V to V _{DD}	25 °C			1	μA	
Output leakage current	μισι		125 °C	°C —		2	μA	
Operating power supply current* ³	ldd	SCK = 50MHz			3	4	mA	
Standby current	lsв	$SCK = SI = \overline{CS} = WP = V_{DD}$			12	150	μA	
Hibernate current	Izzнib		CS = V _{DD} All inputs Vss or V _{DD}		0.3	10	μA	
DPD current	ZZDPD	$\overline{CS} = V_{DD}$ All inputs Vss or V _{DD}			6	30	μA	
Input high voltage	Vін	V _{DD} = 1.8 V to 3.6 V		$V_{DD} imes 0.8$		$V_{\text{DD}} + 0.5$	V	
Input low voltage	VIL	V _{DD} = 1.8 V to 3.6 V		- 0.5		$V_{\text{DD}} \times 0.2$	V	
Output high voltage	Vон	Iон = − 2 mA		$V_{\text{DD}} - 0.5$			V	
Output low voltage	Vol	lo∟ = 2 mA				0.4	V	
Pull up resistance for HOLD	R₽			36	66	230	kΩ	

*1 : Applicable pin : \overline{CS} , \overline{WP} , SCK, SI

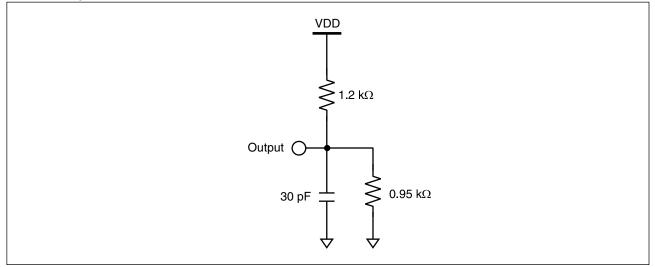
*2 : Applicable pin : SO

*3 : Input voltage magnitude : VDD – 0.2 V or VSS

2. AC Characteristics

Deremeter	Symbol	V	alue	– Unit	Condition
Parameter	Symbol	Min	Max	Unit	Vdd
SCK clock frequency	fск		50	MHz	all commands ex- cept for READ/ SSRD
			40		READ command
			10		SSRD command
Clock high time	tсн	9	_	ns	
Clock low time	tc∟	9	_	ns	
Chip select set up time	t csu	5	_	ns	
Chip select hold time	tсsн	5		ns	
Output disable time	tod		10	ns	
Output data valid time	todv		8	ns	*1
Output hold time	tон	0		ns	
Deselect time	t⊳	40		ns	
Data in rising time	t _R		50	ns	
Data falling time	t⊧		50	ns	
Data set up time	ts∪	5		ns	
Data hold time	tн	5		ns	
HOLD set uptime	tнs	10		ns	
HOLD hold time	tнн	10		ns	
HOLD output floating time	tнz		20	ns	
HOLD output active time	t∟z		20	ns	
DPD/Hibernate recovery pulse width	tcsw∟	100	_	ns	
DPD recovery time	t RECDPD		10	μs	
Hibernate recovery time	t RECHIB		450	μs	

*1: In SSRD command, 60ns(max.)


AC Test Condition

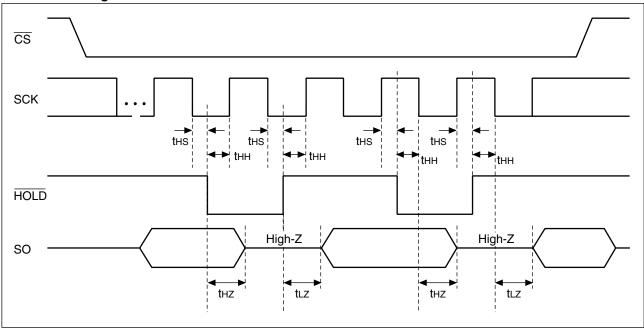
Power supply voltage Operation ambient temperature Input voltage magnitude	: 1.8 V to 3.6 V Operation : $-40 \text{ °C to } + 125 \text{ °C}$: $V_{DD} \times 0.8 \le V_{IH} \le V_{DD}$ $0 \le V_{IL} \le V_{DD} \times 0.2$
Input rising time Input falling time Input judge level Output judge level	: 5 ns : Vpd/2 : Vpd/2

MS85RS1MTY(AEC-Q100 Compliant)

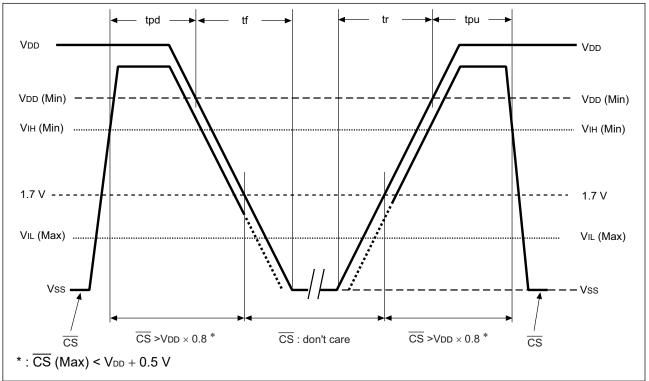
AC Load Equivalent Circuit

3. Pin Capacitance


Parameter	Symbol	Condition	Va	lue	Unit
Falameter	Symbol	Condition	Min	Max	Unit
Output capacitance	Co	$V_{\text{DD}} = 3.3 \text{ V},$ $V_{\text{IN}} = V_{\text{OUT}} = 0 \text{ V to } V_{\text{DD}},$		8	pF
Input capacitance	Cı	$f = 1 \text{ MHz}, T_A = +25 \text{ °C}$		6	pF


MS85RS1MTY(AEC-Q100 Compliant)

TIMING DIAGRAM


Serial Data Timing

• Hold Timing

POWER ON/OFF SEQUENCE

In case relative short V_{DD} pulse whose peak level is beyond 1.7 is applied, please set V_{DD} falling time, tf, longer than 0.4ms/V. (When V_{DD} rises beyond 1.7V, and falls just after, if this term is very short the device may loose its function.)

Deremeter	Symbol	Value		11	Condition
Parameter	Symbol	Min	Max	Unit	Vdd
\overline{CS} level hold time at power OFF	tpd	400		ne	1.8V to 2.7V
	ιρu	0		ns	2.7V to 3.6V
CS level hold time at power ON	tpu	450		μs	—
Power supply rising time	tr	0.05		ms/V	—
Power supply falling time	tf	0.1		ms/V	—

If the device does not operate within the specified conditions of read cycle, write cycle or power on/off sequence, memory data can not be guaranteed.

■ FeRAM CHARACTERISTICS

Parameter	Value		Unit	Remarks
Farameter	Min	Max	Onit	Remarks
Read/Write Endurance*1	10 ¹³	—	Times	Operation Ambient Temperature $T_A = + 125 \ ^{\circ}C$
	5.9 or more ^{*3}			Operation Ambient Temperature $T_A = + 125 \ ^{\circ}C$
Data Retention ^{*2}	19.1		Years	Operation Ambient Temperature $T_A = +105 \text{ °C}$
	70.4			Operation Ambient Temperature $T_A = +85 \text{ °C}$

*1: The value for Read/Write endurance apply to the total number of read and write operations per row in FeRAM. This is because FeRAM needs writing operation after each reading operations. Each row in the memory array has 32 internal outputs, and 8 outputs are selected by A0 and A1. In continuous Read/Write operations, after selecting a certain address and automatically incrementing until A0 and A1 change from (0,0) to (1,1), the Read/Write count endurance count is totaled as one operation. Subsequently, when incrementing automatically and switching to the next row, each row is counted as a new Read/Write operation. If /CS is raised and then the same row is selected again, it is counted as the second operation for that row.

*2: Minimum values define retention time of the first reading/writing data right after shipment, and these values are calculated by qualification results.

*3: Under evaluation for more than 5.9 years(+125 °C).

NOTE ON USE

We recommend programming of the device after reflow except for special sector region and serial number region. Data written before reflow cannot be guaranteed.

■ ESD AND LATCH-UP

Test	DUT	Value
ESD HBM (Human Body Model) JEDEC JS001 compliant		≥ 2000 V
ESD CDM (Charged Device Model) JEDEC JS002 compliant	MS85RS1MTYPNF-GS-BDE1 MS85RS1MTYPNF-GS-BDERE1	≥ 1000 V
Latch-Up (I-test) JESD78 compliant	MS85RS1MTYPN-GS-AWE1 MS85RS1MTYPN-GS-AWEWE1	≥ 125mA
Latch-Up (V _{supply} overvoltage test) JESD78 compliant		$\geq 5.4V$

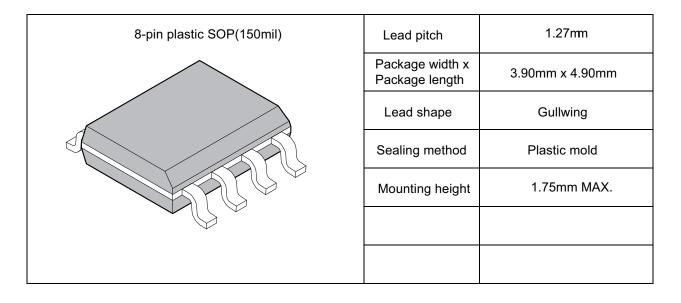
REFLOW CONDITIONS AND FLOOR LIFE

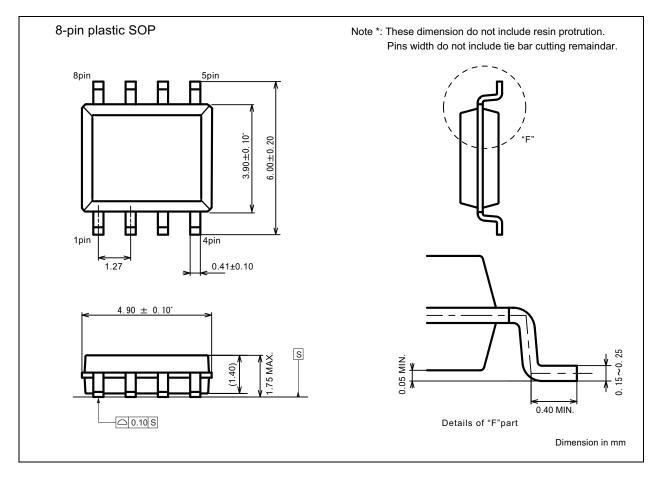
[JEDEC MSL]: Moisture Sensitivity Level 3 (IPC/JEDEC J-STD-020E)

Current status on Contained Restricted Substances

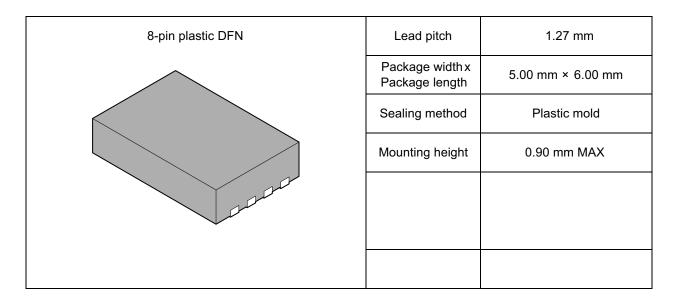
This product complies with the regulations of REACH Regulations, EU RoHS Directive and China RoHS.

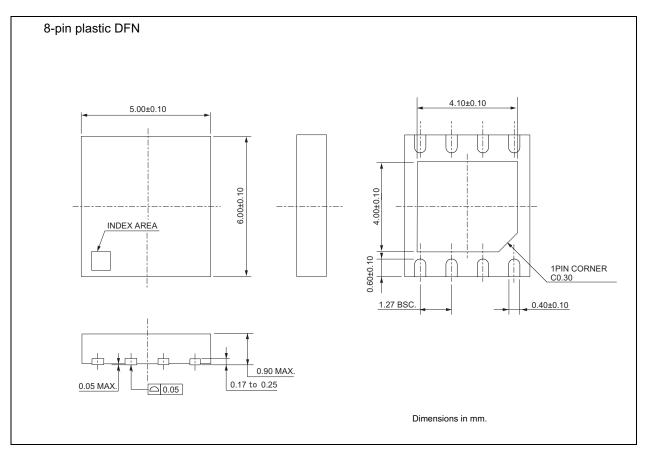
■ ORDERING INFORMATION :


Part number	Package	Shipping form	Minimum shipping quantity
MS85RS1MTYPNF-GS-BDE1	8-pin plastic SOP	Tube	*
MS85RS1MTYPNF-GS-BDERE1	8-pin plastic SOP	Embossed Carrier tape	1500
MS85RS1MTYPN-GS-AWE1	8-pin plastic DFN	Tray	*
MS85RS1MTYPN-GS-AWEWE1	8-pin plastic DFN	Embossed Carrier tape	1500

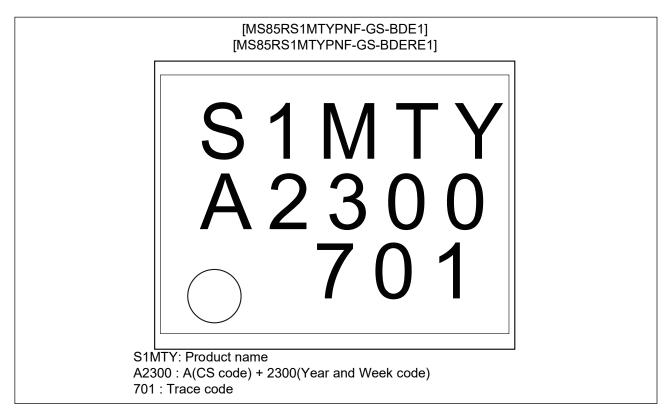

* : Please contact our sales office about minimum shipping quantity.

PACKAGE DIMENSION


(1) MS85RS1MTYPNF-GS-BDE1/MS85RS1MTYPNF-GS-BDERE1



(2) MS85RS1MTYPN-GS-AWE1/MS85RS1MTYPN-GS-AWEWE1



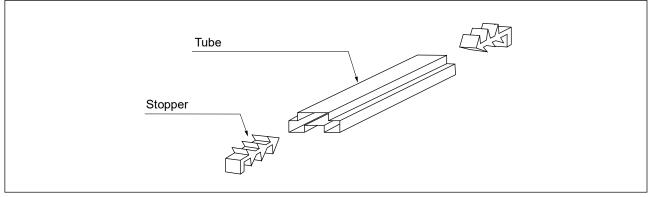
MARKING (Example)

(1) MS85RS1MTYPNF-GS-BDE1/MS85RS1MTYPNF-GS-BDERE1

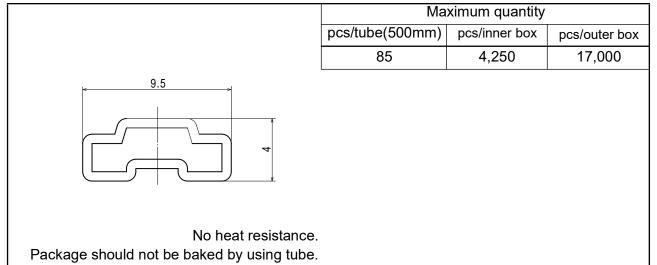
(2) MS85RS1MTYPN-GS-AWE1/MS85RS1MTYPN-GS-AWEWE1

[MS85RS1MTYPN-GS-AWE1] [MS85RS1MTYPN-GS-AWEWE1]	
• MS85RS1MTY AE1 2300R00	
MS85RS1MTY: Product name AE1 : A(CS code) + E1(Lead free code) 2300R00 : 2300(Year and Week code) + R00(Trace code)	

MS85RS1MTY(AEC-Q100 Compliant)

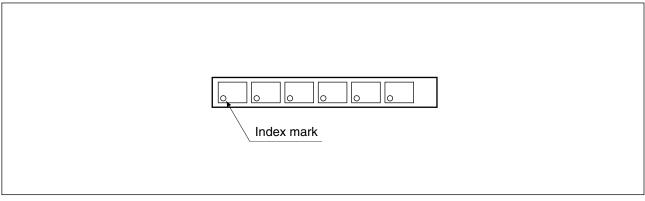

PACKING INFORMATION

(1) MS85RS1MTYPNF-GS-BDE1/MS85RS1MTYPNF-GS-BDERE1


1. Tube (MS85RS1MTYPNF-GS-BDE1)

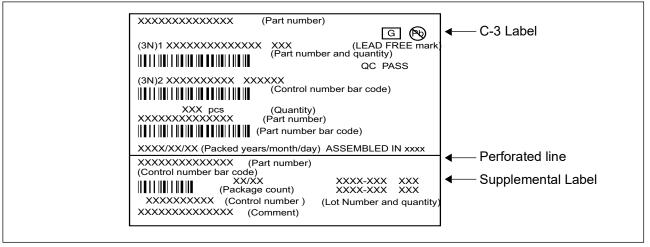
1.1 Tube Dimensions

• Tube/stopper shape (example)

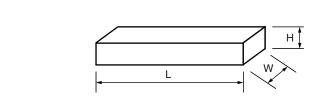


Tube cross-sections and Maximum quantity

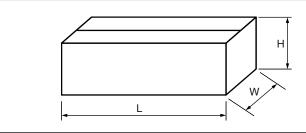
(Dimensions in mm)


• Direction of index in tube

1.2 Product label indicators (example)


Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label (50mm × 100mm) Supplemental Label (20mm × 100mm)]

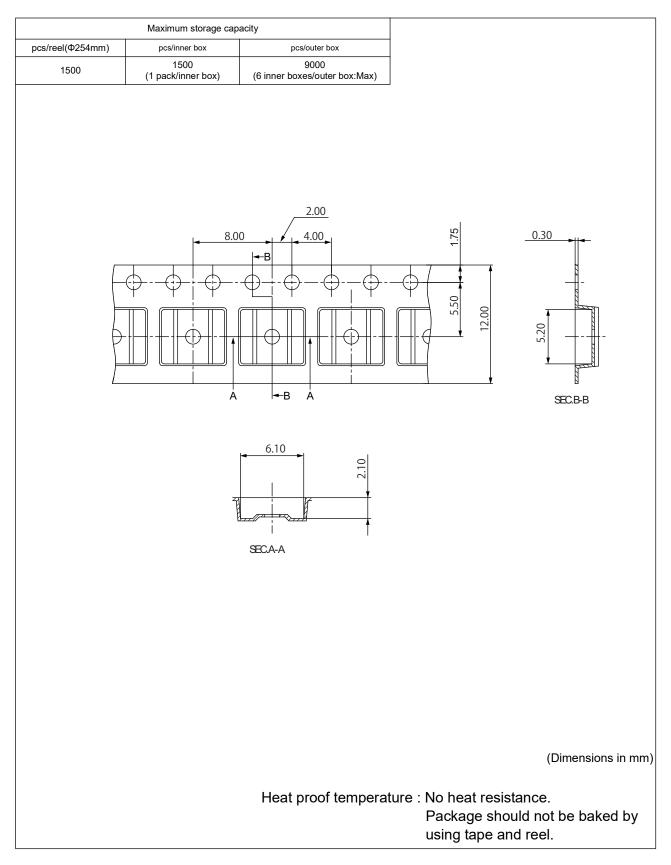
1.3 Dimensions for Containers


(1) Dimensions for inner box

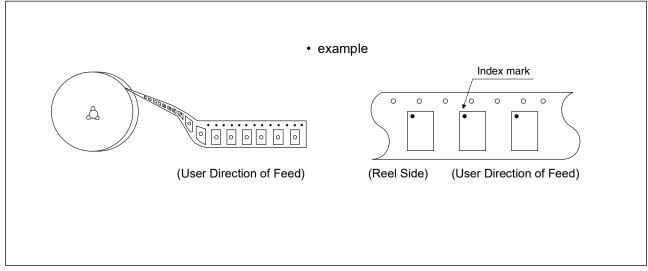
L	W	Н
540	125	75
		(D) · · · ·

(Dimensions in mm)

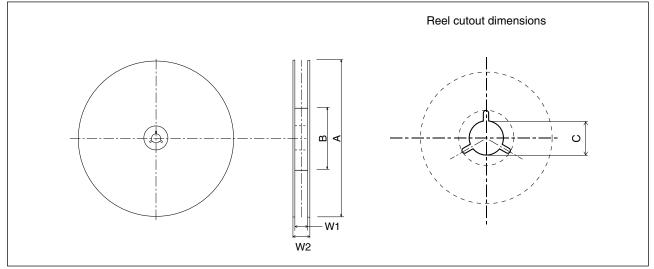
(2) Dimensions for outer box


L	W	Н
565	270	180

(Dimensions in mm)

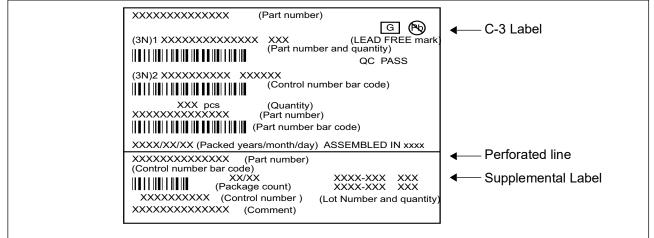

2. Emboss Tape (MS85RS1MTYPNF-GS-BDERE1)

2.1 Tape Dimensions (not drawn to scale) (8-pin plastic SOP)



2.2 IC orientation

2.3 Reel dimensions



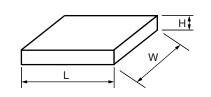
Dimensions in mn

A	В	С	W1	W2
254	100	13	13.5	17.5

2.4 Product label indicators (examples)

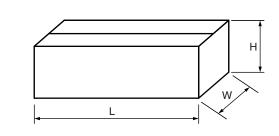
Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label (50mm × 100mm) Supplemental Label (20mm × 100mm)]

Label II:Moisture Barrier Bag (It sticks it on the Aluminum laminated bag) [MSL Label]


	Caution This bag contains MOISTURE-SENSITIVE DEVIC	CES 3	
	shelf life in sealed bag:24 months at < ∋ humidity (RH)	40°C and	
2. Peak packag	re body temperature: 260°C		
solder or oth a) Mounted v <30°C/60%	opened, devices that will be subjected er high temperature process must be within: 168 hours of factory conditions & RH, or r J-STD-033		
a) Humidity I	uire bake, before mounting, if: Indicator Card reads >10% for level 2a >60% for level 2 devices when read a rre not met		
5. If baking is r bake procedu	equired, refer to IPC/JEDEC J-STD- ure	033 for	
Bag Seal Date:	see adjacent bar code label.		
Note: Level and	d body temperature defined by IPC/JI	EDEC J-STD-020	

MS85RS1MTY(AEC-Q100 Compliant)

2.5 Dimensions for Containers

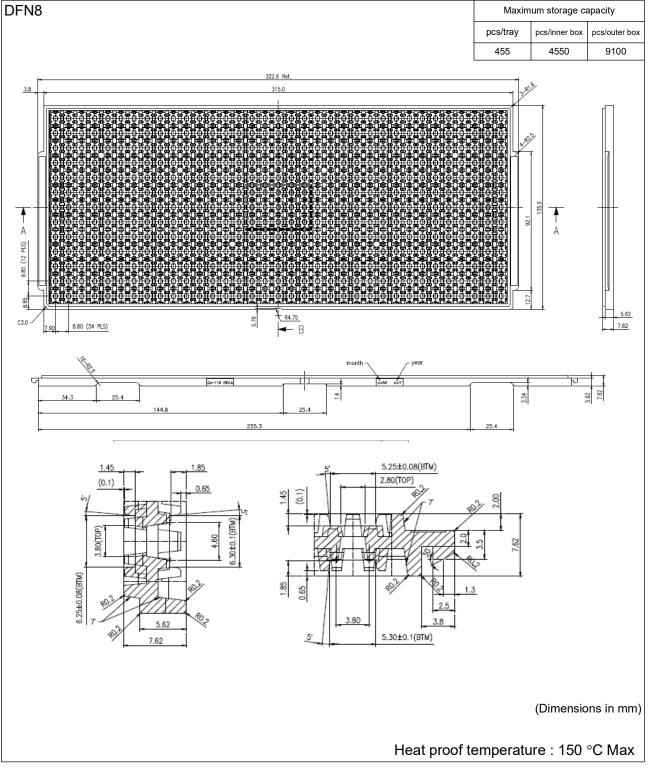

(1) Dimensions for inner box

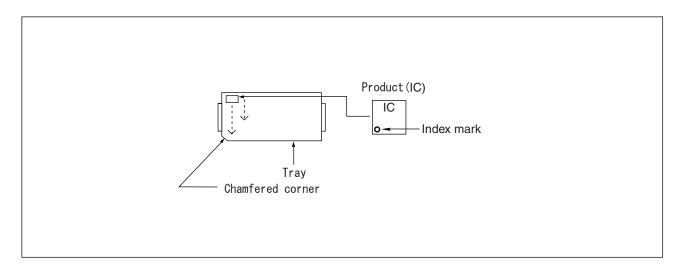
Tape width	L	W	н
12	265	260	50

(Dimensions in mm)

(2) Dimensions for outer box

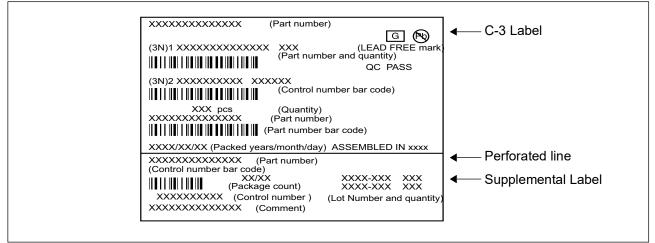
L	W	Н
565	270	180


(Dimensions in mm)


(2) MS85RS1MTYPN-GS-AWE1/MS85RS1MTYPN-GS-AWEWE1

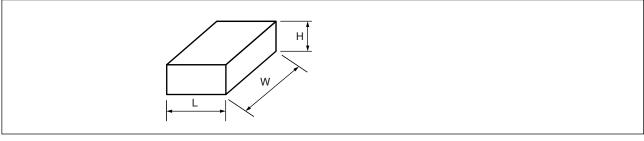
1. Tray (MS85RS1MTYPN-GS-AWE1)

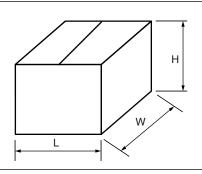
1.1 Tray Dimensions



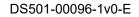
1.2 IC orientation

1.3 Product label indicators(example)

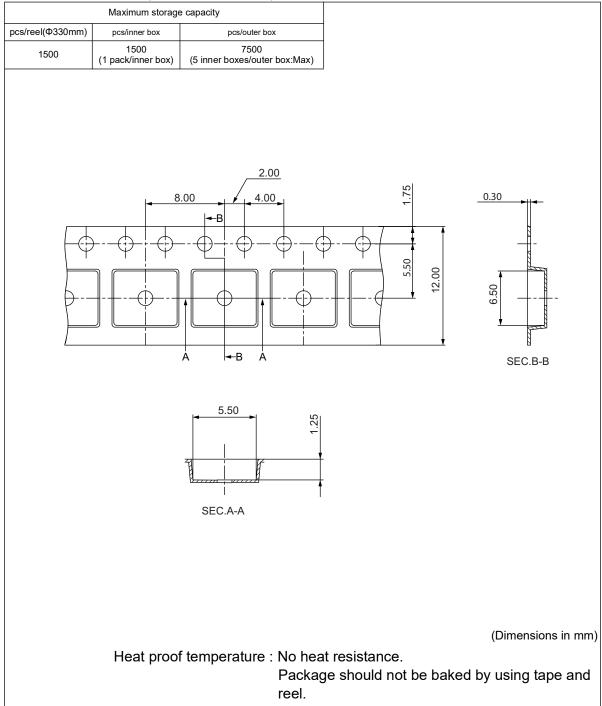

Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label (50mm × 100mm) Supplemental Label (20mm × 100mm)]


1.4 Dimensions for Containers

(1) Dimensions for inner box

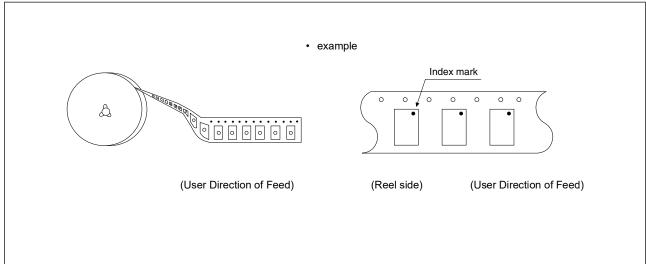

L	W	Н
175	375	110
		(Dimensions in mm)

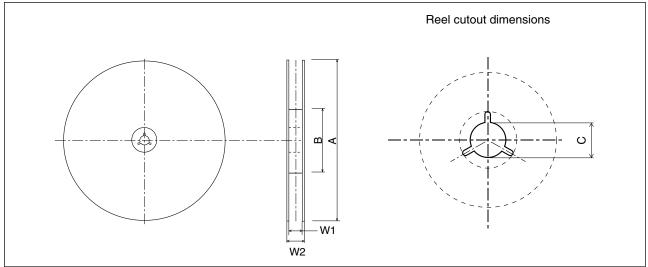
(2) Dimensions for outer box


L	W	Н
190	380	330

(Dimensions in mm)

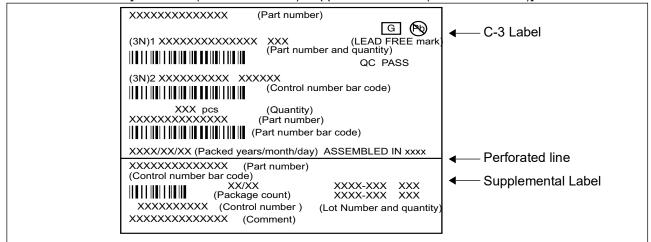
2. Emboss Tape (MS85RS1MTYPN-GS-AWEWE1)


2.1 Tape Dimensions (not drawn to scale)(8-pin plastic DFN 5mm x 6mm)



MS85RS1MTY(AEC-Q100 Compliant)

2.2 IC orientation

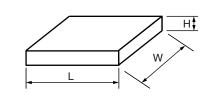

2.3 Reel dimensions

			Dimensio	ns in mm
A	В	С	W1	W2
330	100	13	13.5	17.5

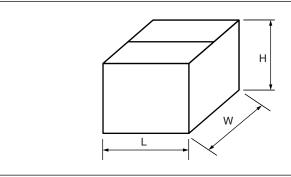
2.4 Product label indicators (example)

Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label (50mm × 100mm) Supplemental Label (20mm × 100mm)]

Label II: Moisture Barrier Bag (It sticks it on the Aluminum laminated bag)


[MSL Label]

2.5 Dimensions for Containers


(1) Dimensions for inner box

Tape width	L	W	н
12	350	335	35

(Dimensions in mm)

(2) Dimensions for outer box

L	W	Н
384	368	225

(Dimensions in mm)

RAMXEED LIMITED

Shin-Yokohama Chuo Building, 2-100-45 Shin-Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-0033, Japan *https://ramxeed.com/*

All Rights Reserved.

RAMXEED LIMITED, its subsidiaries and affiliates (collectively, "RAMXEED ") reserves the right to make changes to the information contained in this document without notice. Please contact your RAMXEED sales representatives before order of RAMXEED device.

Information contained in this document, such as descriptions of function and application circuit examples is presented solely for reference to examples of operations and uses of RAMXEED device. RAMXEED disclaims any and all warranties of any kind, whether express or implied, related to such information, including, without limitation, quality, accuracy, performance, proper operation of the device or non-infringement. If you develop equipment or product incorporating the RAMXEED device based on such information, you must assume any responsibility or liability arising out of or in connection with such information or any use thereof. RAMX-EED assumes no responsibility or liability for any damages whatsoever arising out of or in connection with such information or any use thereof.

Nothing contained in this document shall be construed as granting or conferring any right under any patents, copyrights, or any other intellectual property rights of RAMXEED or any third party by license or otherwise, express or implied. RAMXEED assumes no responsibility or liability for any infringement of any intellectual property rights or other rights of third parties resulting from or in connection with the information contained herein or use thereof.

The products described in this document are designed, developed and manufactured as contemplated for general use including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high levels of safety is secured, could lead directly to death, personal injury, severe physical damage or other loss (including, without limitation, use in nuclear facility, aircraft flight control system, air traffic control system, mass transport control system, medical life support system and military application), or (2) for use requiring extremely high level of reliability (including, without limitation, submersible repeater and artificial satellite). RAMXEED shall not be liable for you and/or any third party for any claims or damages arising out of or in connection with above-mentioned uses of the products.

Any semiconductor devices fail or malfunction with some probability. You are responsible for providing adequate designs and safeguards against injury, damage or loss from such failures or malfunctions, by incorporating safety design measures into your facility, equipments and products such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions.

The products and technical information described in this document are subject to the Foreign Exchange and Foreign Trade Control Law of Japan, and may be subject to export or import laws or regulations in U.S. or other countries. You are responsible for ensuring compliance with such laws and regulations relating to export or re-export of the products and technical information described herein. All company names, brand names and trademarks herein are property of their respective owners.